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Abstract

Telomeres maintain genomic integrity in normal cells, and their progressive shortening during successive cell
divisions induces chromosomal instability. In the large majority of cancer cells, telomere length is maintained by
telomerase. Thus, telomere length and telomerase activity are crucial for cancer initiation and the survival of tumors.
Several pathways that regulate telomere length have been identified, and genome-scale studies have helped in
mapping genes that are involved in telomere length control. Additionally, genomic screening for recurrent human
telomerase gene hTERT promoter mutations and mutations in genes involved in the alternative lengthening of
telomeres pathway, such as ATRX and DAXX, has elucidated how these genomic changes contribute to the
activation of telomere maintenance mechanisms in cancer cells. Attempts have also been made to develop
telomere length- and telomerase-based diagnostic tools and anticancer therapeutics. Recent efforts have revealed
key aspects of telomerase assembly, intracellular trafficking and recruitment to telomeres for completing DNA
synthesis, which may provide novel targets for the development of anticancer agents. Here, we summarize
telomere organization and function and its role in oncogenesis. We also highlight genomic mutations that lead to
reactivation of telomerase, and mechanisms of telomerase reconstitution and trafficking that shed light on its
function in cancer initiation and tumor development. Additionally, recent advances in the clinical development of
telomerase inhibitors, as well as potential novel targets, will be summarized.

Background

Cancer is generally an age-related genetic disease, manifest-
ing only when normal cells accumulate genomic instability
over a period of time and acquire the capability of replica-
tive immortality. Telomere attrition during successive cell
divisions induces chromosomal instability and contributes
significantly to genomic rearrangements that can result in
tumorigenesis. Telomeres, repetitive (TTAGGG) DNA-
protein complexes at the ends of chromosomes, are crucial
for the survival of cancer cells. They are maintained by an
enzyme called telomerase in the vast majority of tumors.
The mechanisms underlying telomere length (TL) mainten-
ance and telomerase expression involve transcriptional,
post-transcriptional and epigenetic regulation, and in-depth
understanding of these mechanisms may provide novel
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biomarkers and targets for early detection of disease, deter-
mination of disease prognosis, and the development of
therapeutics [1].

Telomeres protect chromosome ends from fusion and
from being recognized as sites of DNA damage (Box 1).
Dysfunctional telomeres, arising by critical shortening of
telomeres in normal somatic cells during progressive cell
divisions, elicit DNA damage responses (DDRs) that trig-
ger cellular senescence. Cells that gain oncogenic changes
bypass senescence and continue to divide (extended life-
span period) until multiple critically shortened telomeres
initiate crisis (a period of complete replicative senescence,
chromosome end-to-end fusions, and extensive apop-
tosis). This leads to breakage—fusion—bridge cycles in
which two sister chromatids lacking telomeres fuse
together, forming a bridge with a chromatin connection.
During anaphase, the sister chromatids are drawn apart
owing to movement towards opposite poles, resulting in
the formation of uneven derivative chromosomes, leading
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Box 1. Major historical research milestones in telomere and telomerase biology

Telomeres: Discovered by American geneticist Hermann J. Muller working on Drosophila melanogaster in 1938. He observed that the
ends of irradiated chromosomes were resistant to mutagenic X-rays and did not undergo deletions or inversions due to the presence of
cap-like structures that he called “telomeres” [81].

A crucial role for telomeres in chromosomal integrity: Elucidated by Barbara McClintock in 1941. She described that rupture of the
chromosomes resulted in the formation of dicentric chromosomes due to fusion of their ends, and demonstrated that damaged ends of the
chromosomes could be restored [82].

Cellular immortality in culture: Alex Carrel, recipient of the 1912 Nobel Prize in physiology, working at the Rockefeller Institute
demonstrated that chick heart tissue culture cells can be maintained in long-term cultures by replenishing with fresh culture medium. He
hypothesized that the lifespan of cultured tissues could be extended indefinitely and that the tissues should intrinsically be able to maintain
permanent life in vitro under ideal culture conditions. Later, Carrel's associates showed a continuous culture of chick heart cells from 1912

to 1946, and the idea of cell immortality as an intrinsic property was widely accepted by the scientific community. However, it was then
discovered that the use of chick embryo extract to culture these cells was actually re-seeding fetal cells and thus the immortality reported by
the Carrel laboratory has been largely discounted.

The concept of normal cell immortality challenged: Leonard Hayflick, in 1961 at the Wistar Institute, demonstrated that normal
human fetal cells in culture could divide only 40 to 60 times, and after that they underwent aging at the cellular level (then called phase
Il and now replicative senescence) [83].

End replication problem: In 1971, James Watson, the co-discoverer of the DNA double helix, suggested that there was an “end
replication problem” due to the mechanism governing semi-conservative DNA replication. Watson predicted, based on the asymmetry of
how linear duplex DNA is copied, that each cell division would result in the extreme termini of chromosomes being lost. This would be
incompatible with long-term maintenance of the genome owing to progressive chromosome shortening with each replication cycle,
eventually reaching a critical point leading to cell senescence or death. In addition, he postulated the existence of a protective mechanism
to prevent chromosomal shortening [84].

Hypothesis about cellular aging: Also in 1971, Alexsey Olovnikov, a Russian scientist, hypothesized that there could be a problem
with the ends of chromosomes. He postulated that progressive shortening of the telomere would eventually run into essential
genes, leading to cellular aging and perhaps contributing to human aging [85].

Tetrahymena thermophila telomeres tandem repeat sequences: In 1978, Elizabeth Blackburn and Joseph Gall carried out sequencing
experiments for the DNA of the Tetrahymena thermophila minichromosome and reported that telomeres contained 20-70 tandem copies
of a simple hexanucleotide with the sequence 5-CCCCAA-3" on one strand and 5-TTGGGG-3' on the complementary strand [86].
Telomerase: Blackburn and Carol Greider, at Berkeley in 1985, identified an enzymatic activity capable of extending telomeric sequences.
The enzyme was named terminal telomere transferase but is now known as telomerase [87]. Along with Jack W. Szostak they received the
2009 Nobel Prize for their discovery that telomeres are protected from progressive shortening by the enzyme telomerase.

Human telomerase: Gregg Morin, in 1989 at Yale University, was the first to report telomerase activity in crude Hela cell extracts. He
also demonstrated that human telomeres consisted of the repeated sequence TTAGGG [88]. In 1994, Jerry Shay and colleagues showed
telomerase activity in ~90 % of human cancers and cell lines [89], and in 1998 the same team demonstrated that introduction of hTERT
(the catalytic protein reverse transcriptase component of telomerase) into normal human cells was sufficient to immortalize cells [90].

to genomic instability. The period of crisis results in ex-
tensive cell death. However, certain rare cells escape crisis

recombination mechanism termed alternative lengthening
of telomeres (ALT) reverses telomere attrition in order to

and maintain stable but usually shortened telomere
lengths for continued cell growth, eventually progressing
to a malignant phenotype. Cancer cells achieve prolifera-
tive immortality by activating or upregulating the nor-
mally silent human TERT gene (WTERT) that encodes
telomerase, a protein with reverse transcriptase activity
that complexes with other proteins and a functional RNA
(encoded by KTR, also called h"TERC) to make a ribonu-
cleoprotein enzyme complex. Rarely, another DNA

bypass senescence. Although #TERT is usually silenced in
almost all somatic cells, it is significantly expressed in
~90 % of human cancers. The details of the under-
lying mechanisms of ATERT activation are still being
elucidated, but they mainly include mutations in the
KWTERT promoter, alterations in alternative splicing of
WTERT pre-mRNA, KhTERT amplification, epigenetic
changes, and/or disruption of telomere position effect
(TPE) machinery [2].
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Recent reports have implicated two cancer-specific
WTERT promoter mutations (mainly C T transitions) in
the activation of telomerase in cancer cells [3, 4]. These
mutations, which are located either —124 base pairs (bp)
or —146 bp upstream from the TERT translation start site
[5, 6], have been found to be associated with increased
telomerase activity [7]. Therefore, molecular mechanisms
that regulate #/TERT expression and telomerase assembly
have been subjected to intense investigation. Studies
using telomerase inhibition strategies have established
that robust AZTERT inhibition can lead to progressive
telomere shortening and eventually cancer cell death.
Several approaches, including use of small-molecule
inhibitors, antisense oligonucleotides, immunotherapy, and
G-quadruplex stabilizers have been employed to inhibit tel-
omerase function [8]. Currently, many anti-telomerase
therapeutics are being evaluated in clinical trials against a
variety of cancer types. The following sections will cover re-
cent developments in the area of telomere and telomerase
biology, their implications for understanding mechanisms
underlying cancer and for the development of cancer ther-
apies, as well as outstanding questions for the field.

Telomeres: organization, function and association
with cancer

Recent studies have significantly contributed to our un-
derstanding of telomere organization in the nucleus, telo-
mere profiling for risk stratification, and the signaling
pathways that mediate modulation of telomere structural
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component proteins or factors to regulate gene transcrip-
tion [9]. Telomeres consist of a capping structure, which
is a specialized nucleoprotein structure consisting of DNA
and shelterin protein complexes. Telomeric DNA contains
a variable number of G-rich, non-coding, tandem repeats
(10-15 kilobases (kb) long in humans at birth) of double-
stranded DNA sequence, 5'-(TTAGGG),-3’, followed by
a terminal 3" G-rich single-stranded overhang (150-200
nucleotide long). The 3" G-rich overhang facilitates telo-
meric DNA in forming a higher-order structure in which
the 3" single-stranded overhang folds back and invades
the homologous double-stranded TTAGGG region, form-
ing a telomeric loop (T-loop) that provides 3’-end protec-
tion by sequestering it from recognition by the DDR
machinery [10]. The proteins associated with telomeres
are called the shelterin complex, which consists of three
core shelterin subunits, TRF1 and TRF2, which directly
recognize and bind duplex TTAGGG repeats, and POT1,
which recognizes and binds single-stranded TTAGGG
overhangs. These three proteins are interconnected by
three additional shelterin proteins, TIN2, TPP1 and RAP1,
forming a complex that enables DDR surveillance machin-
ery to distinguish telomere DNA from sites of genomic
DNA damage (Fig. 1). The shelterin complex performs
critical and distinct functions that ensure telomere stabil-
ity. For example, TRF2 is required for T-loop formation
and maintenance of ATM-mediated DDR suppression and
repression from non-homologous end joining [11]. TRF1
has a central role in controlling replication of telomeric

TRF1 and TRF2 bind to
telomeric DNA repeats with

RAP1 interacts with TRF2
and improves its selective
binding to telomeric DNA

high affinity

Telomeric double -
stranded DNA
(10-15 kb long)

[ TIN2 binds to both TRF1 and
T

RF2 to stabilize their association] [through its N-terminal OB-fold
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POT1 binds to 3’ overhang ]

Fig. 1 Schematic representation of telomeric DNA and components of the shelterin complex. Telomeres comprise a specialized nucleoprotein-
capping structure consisting of DNA and shelterin protein complexes. Telomeric DNA contains a variable number of G-rich, non-coding, tandem
repeats of the double-stranded DNA sequence 5-(TTAGGG),-3', followed by a terminal 3’ G-rich single-stranded overhang (150-200 nucleotides
(nt) long). The 3" G-rich overhang facilitates telomeric DNA in forming a higher-order structure in which the 3’ single-stranded overhang folds back
and invades the homologous double-stranded TTAGGG region, forming a telomeric loop (T-loop) that provides 3-end protection by sequestering it from
recognition by the DNA damage response machinery. The proteins associated with telomeres form the shelterin complex, which consists of three core
shelterin subunits, TRFT and TRF2, which directly recognize and bind duplex TTAGGG repeats, and POT1, which recognizes and binds single-stranded
TTAGGG overhangs. These three proteins are interconnected by three additional shelterin proteins, TIN2, TPP1 and RAP1, forming a complex that enables
the DNA damage response surveillance machinery to distinguish telomere DNA from sites of genomic DNA damage
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DNA [12] while POT1 associates with TPP1 to bind the
single-stranded 3’ overhang and repress ATR-mediated
DDR by preventing the recruitment of replication protein
A (RPA) [13]. TIN2 is essential to the overall integrity of
the shelterin complex as it links the TPP1/POT1 heterodi-
mer to TRF1 and TRF2, and stabilizes TRF1 and TREF2 as-
sociations with telomeric DNA [14, 15]. RAP1 interacts
with TRF2 and improves its selective binding to telomeric
DNA [16].

Apart from DNA end protection, telomeres also perform
other important functions such as regulation of gene ex-
pression through transcriptional silencing of genes located
close to the telomeres, called TPE [17], or located at long
distances from telomeres, termed TPE over long distances
(TPE-OLD) [18]. The function of telomeres is tightly regu-
lated and depends on a minimal length of telomeric repeats
and the functionality of the associated shelterin protein
complexes. In addition, higher-order DNA conformations,
such as the T-loop and G-quadruplexes (G-rich four-
stranded non-helical structures) are thought to contribute
to normal telomere function. Moreover, telomeric chroma-
tin has an important role in telomere maintenance, signal-
ing and regulation of telomere function, but many of the
precise structures and molecular mechanisms of human
telomeric chromatin are not well understood. However,
telomeric regions contain telomeric repeat-containing
RNA (TERRA), a long non-coding RNA that is transcribed
from telomeric DNA by RNA polymerase II [19]. TERRA
has been implicated in telomerase regulation, organization
of heterochromatin at telomeres, regulation of gene expres-
sion, and in DDR triggered by dysfunctional telomeres
[19]. The mammalian cell lines harboring active ALT have
higher TERRA levels compared with telomerase-positive
cells [20]. However, the exact role of TERRA in activation
of the ALT mechanism is not clear [21].

TL is critically important in normal cells, and telomere
shortening can—in combination with other oncogenic
changes—promote genome instability, potentially stimu-
lating initiation of the early stages of cancer. In humans,
the distribution of TL among different chromosome
arms is heterogeneous. TL reduces at a rate of 50—
150 bp at each cell division in human somatic cells in
cell culture. Consequently, individual telomere shorten-
ing rates may be different in different cell lineages. The
time point at which any chromosome end will become
uncapped depends on the specific TL shortening rate in
each cell type or tissue. Thus, the shortest telomere is
critically important for cell viability and chromosomal
stability as it may be a sole contributor to the senescence
onset signal [22]. There are two critically important bar-
riers that prevent cell immortalization and ultimately
malignant transformation: replicative senescence and
crisis [23]. The period of cellular senescence, also known
as mortality stage 1 (M1), is characterized by inhibition
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of cellular proliferation, probably due to the uncapping
of one or a few shortened telomeres. In the presence of
cancer-initiating changes, M1 can be bypassed, providing
an extended cell division period. However, during this
phase additional telomeres become very short and these
“marked” telomeres result in a new dysfunctional state,
termed crisis (or M2 crisis). M2 is a period in which sig-
nals to undergo replicative senescence and signals for
cells to continue to divide are balanced. This eventually
results in chromosome end-to-end fusions and extensive
cell death (apoptosis) [24]. However, a rare clone (1 in
100,000 to 1 in 10 million cells) can progress towards
the acquisition of cell immortality [25]. At this point, a
mechanism must be engaged to maintain these very
short telomeres, and this occurs by either increasing or
reactivating telomerase expression, or by acquiring a
much rarer telomerase-independent ALT mechanism,
thus bypassing crisis and ultimately leading to cell
immortalization [26] (Fig. 2).

Although telomerase maintains telomere length in the
majority of cancer cells, the ALT mechanism is also
employed by 10-15 % of tumors [27]. The ALT pathway
utilizes a homologous recombination-based DNA repli-
cation mechanism to extend telomere length. The acti-
vation of the ALT mechanism is thought to involve loss
of chromatin-remodeling factors such as ATRX and
DAXX, resulting in reduced compaction of telomeric
chromatin, which leads to the production of altered telo-
meric DNA sequences and activation of a telomere-
specific DDR pathway [28, 29], which in turn stimulates
homology-directed synthesis of telomeric DNA. Re-
cently, Flynn and colleagues [30] reported that inhibition
of the protein kinase ATR disrupts the ALT mechanism
in ALT-positive cancer cells, resulting in cell death. This
suggests that ATR inhibitors may be a useful therapeutic
intervention for ALT-harboring tumors.

Telomerase: the key telomere length maintenance
mechanism

Telomerase is a large ribonucleoprotein complex respon-
sible for progressive synthesis of telomeric DNA repeats
(TTAGGG) at the 3" ends of linear chromosomes, thereby
reversing the loss of DNA from each round of replication.
Telomerase is a reverse transcriptase that consists of a
catalytic protein subunit called telomerase reverse tran-
scriptase (TERT), encoded by the ZTERT gene in humans
that is positioned at chromosome 5p15.33, and an essen-
tial RNA component known as human telomerase RNA
(hTR) or human telomerase RNA component (hTERC),
encoded by the ATERC gene found on chromosomal
region 3q26. hTR acts as a template (carries sequence
complementary to one or more copies of telomeric re-
peats) for the synthesis of telomere DNA, and is also in-
volved in the catalysis, localization and assembly of the



Jafri et al. Genome Medicine (2016) 8:69

Page 5 of 18

Abrogation of p53
and/or p16/Rb tumor
suppressor pathways
Extended Iifespan

Loss of cell cycle
checkpoint control
Crisis - M2 phase
Uncapped telomeres
Chromosome
end-to-end fusions

hTERTor
ALT activatlon

¢ Multiple replications, progressive

.@-

Incipient |mmorta| / ‘ Dysfuncnonal
cell telomeres
High genomlc Extensive cell death due to
instability mitotic catastrophe

e (==

Fig. 2 Cellular senescence and crisis. Telomeres protect chromosome ends from undergoing fusions and recombination by masking telomeric
DNA with shelterin protein protective caps, preventing the ends from being recognized by the DNA damage surveillance pathways. Telomere
shortening is a natural consequence of cell division due to the “end replication problem” whereby lagging strand DNA synthesis cannot be
completed all the way to the very end, and increased cell divisions lead to critically shortened telomeres which elicit DNA damage responses
that trigger cellular senescence. In the cells undergoing replicative senescence, the p53 and p16-RB pathways are often activated leading to
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essentially irreversible growth arrest. Cells that gain additional oncogenic changes (p53 loss) can bypass senescence and continue to divide until
multiple critically shortened telomeres initiate crisis, a period of increased chromosome end-to-end fusions and extensive cell death. Only a rare
human cell (one in 10° to 107) can engage a mechanism to bypass crisis and become immortal. This is almost universally accomplished by the

telomeres), involves DNA recombination to maintain telomeres

upregulation or reactivation of telomerase. A rarer telomerase negative immortalization pathway, termed ALT (alternative lengthening of

telomerase holoenzyme [31]. Recent studies have reported
that, in addition to TL maintenance, telomerase is also in-
volved in gene expression regulation, cell proliferation,
apoptosis, WNT/B-catenin signaling, NF-kB signaling,
MYC-driven oncogenesis, DDR, cell adhesion and migra-
tion, and epithelial-mesenchymal transition [32-35]. All
these activities of telomerase are thought to contribute
significantly to the process of oncogenesis.

TL maintenance by telomerase is a complex multistep
process that involves a series of molecular events including
hTERT protein transport and trafficking into the nucleus,
hTR and hTERT assembly with accessory components in

the nucleus, and recruitment to telomeres at the appropri-
ate time during DNA replication. It has been reported that
at least hTERT and hTR are essential for the in vitro reverse
transcriptase activity of the human telomerase enzyme [36].
However, under in vivo conditions the telomerase holoen-
zyme also contains four additional proteins—dyskerin,
NHP2, NOP10 and GAR1 (localization factor)—associated
with the H/ACA class of small nucleolar RNAs that play an
important role in the process of pseudouridylation during
post-transcriptional modification of RNAs. In addition, a
WD-repeat-containing protein 79 called TCAB1 binds to
the CAB-box sequence within hTR and directs the
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telomerase holoenzyme to localize at Cajal bodies bound to
the nucleolus [37]. Numerous additional factors such as the
chaperones HSP90 and p23, as well as the ATPases pontin
and reptin, have also been observed to bind to the two main
subunits of telomerase [38]. Many of these factors are
thought to be involved in the assembly of a functional tel-
omerase holoenzyme in vivo but the actual mechanisms by
which they interact with telomerase remain poorly under-
stood. One working model of human telomerase biogenesis
is that dyskerin, pontin and reptin form a scaffold and cre-
ate an assembly platform for nascent hTR transcripts. Then,
the H/ACA motif-binding complex of dyskerin, NHP2 ribo-
nucleoprotein, NOP10 ribonucleoprotein, a nuclear assem-
bly factor ribonucleoprotein (NAF1) and the telomerase
ribonucleoprotein (RNP) particle associate. Next, hTR
removes NAF1 and attaches GAR1, leading to the forma-
tion of a physiologically stable hTR-H/ACA-RNP complex.
The hTR 3’-hairpin CAB-box sequence recruits TCABI,
and finally hTERT binds to two structurally independent
hTR domains (CR4/CR5), thus generating the catalytically
active telomerase RNP [39]. TCABI, found in Cajal bodies,
binds to the CAB box of hTR and guides telomerase to the
Cajal bodies, where it remains localized for most of the cell
cycle, but the physiological significance of this process is
not known.

The recruitment of telomerase to telomeres occurs only
after the replication fork remodels the protected DNA 3’
ends during the S phase of the cell cycle. It involves pro-
tein—protein interactions between the shelterin complex
components TPP1 and POT1 and the DAT (dissociates
the activities of telomerase) domain of hTERT, a region
that differentiates the in vivo functionality of hTERT from
its in vitro activity. TPP1 contains an N-terminal oligo-
nucleotide/oligosaccharide-binding (OB)-fold domain that
includes a patch of amino acids termed the Tel patch,
which directly interacts with the telomerase DAT domain
[40]. It also contains a central domain that directly binds
to POT1 and a C-terminal domain that associates with
TIN2. Thus, interaction between the DAT domain of
hTERT and shelterin components ensures correct posi-
tioning of telomerase at the 3" end of DNA for synthesis
and processivity of telomeric repeats. Telomerase loading
onto the telomeres is mediated by SRSF11 (a novel TERC-
binding protein), which leads to the stable association of
the enzyme with the telomere overhang, and proper posi-
tioning of the DNA 3’ end at the active site of the enzyme
for nucleotide addition [41] (Fig. 3).

The role of telomerase in cancer: TERT promoter
mutations and telomerase reactivation

Telomerase upregulation or reactivation is a critical
feature in over 90 % of cancers. However, the mecha-
nisms governing ATERT expression in cancer remain
incompletely understood. Therefore, understanding how
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WTERT is activated in cancer cells and how it contributes
to further progression of the disease continues to be a
major area of research.

WTERT is a 40 kb gene consisting of 15 introns and 16
exons. It is located on the short arm of human chromo-
some 5 (5p15.33) approximately 1.2 megabases away from
the telomere, embedded in a nuclease-resistant chromatin
domain [42]. The AWTERT promoter is GC rich and lacks
both TATA (found in the promoter regions of genes that
encode proteins found in both eukaryotes and prokaryotes)
and CAAT (which rarely occurs in the promoter region of
eukaryotes but is completely absent in prokaryotes) boxes
but contains binding sites for multiple transcription factors,
suggesting that #TERT expression is under multiple levels
of control and may be regulated by different factors in dif-
ferent cellular contexts.

The 260 bp proximal region designated as the hTERT
promoter core is responsible for most of its transcriptional
activity. It contains at least five GC boxes (GGGCGQ),
which are binding sites for the zinc finger transcription fac-
tor SP1, and are essential for ZTERT promoter activity.
Two E-boxes (5'-CACGTG-3"), located at positions —165
and +44 of the nucleotide sequence of ATERT relative to
the transcription start site (TSS), provide binding sites for
several enhancer binding proteins such as the MYC/MAX/
MXD1 family and USF1/2. The E-boxes are not only im-
portant for h”TERT promoter activation by c-MYC, but also
bind to MADI1 and USF1 to mediate hTERT repression.
The hTERT promoter core also contains a single TSS that
binds the multifunctional transcription factor TFII-I. The
transcription of the #”TERT promoter is regulated by the ac-
tion of multiple transcription factors and the telomere
chromatin environment. However, it remains unsolved how
the interplay between transcription factors and the telo-
mere chromatin milieu controls #/TERT transcription. Sev-
eral transcription factors bind to the #/TERT promoter core
to activate or repress #TERT transcription. The transcrip-
tion factors that upregulate transcription include ¢-MYC,
SP1, E-twenty-six (ETS) family members, NF-kB, AP-2 and
HIF-1. Transcription factors such as p53 (also known as
TP53; represses transcription in an SP1-dependent man-
ner), MAD (transcription factor involved in a network con-
trolling cell cycle progression), WT1, MZF-2, SIP1 and
menin have been shown to downregulate #TERT transcrip-
tion. Most of the transcription factors that upregulate the
telomerase gene are widely expressed and cannot fully
account for high levels of #TERT expression and activation
during tumorigenesis (Fig. 4).

Recent observations of two highly recurrent muta-
tions at two sites within the core promoter region of
WTERT suggest one possible mechanism for the activation
of telomerase in cancer cells. These mutations, which occur
at —124 bp and -146 bp upstream from the ATG start site,
are C T transitions (at positions 1,295,228 (C228T) and
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1,295,250 (C250T) on chromosome 5), and each mutation
generates an identical 11 bp nucleotide stretch (5'-
CCCCTTCCGGG-3") containing a consensus binding
motif (GGA(A/T)) for ETS transcription factors that can
function as transcriptional repressor, activator or both to
regulate telomerase expression [3, 4]. However, the molecu-
lar mechanisms of telomerase activation by ETS are not
clearly understood. It has recently been reported that epi-
dermal growth factor (EGF)-mediated activation of
telomerase activity in lung cancer is associated with direct
binding of ETS-2 to the h"TERT promoter [43]. The recur-
rent WTERT promoter mutations were first reported as
germline mutations from a family of melanoma patients
and were later seen through genome sequencing of spor-
adic melanoma (in >74 % melanomas) and a number of cell
lines across numerous cancer types and were associated
with increased /TERT promoter activity [3, 4]. These muta-
tions occur in approximately 70 % of melanomas, 80-90 %
of glioblastomas, 60 % of hepatocellular carcinomas, 60 %
of bladder cancers, 70 % of basal cell carcinomas, 50 % of
cutaneous squamous cell carcinomas, up to 30 % of thyroid
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cancers and approximately 72 % of oligodendrogliomas [4,
6, 44, 45].

Additionally, a less frequent #/TERT promoter muta-
tion, —57 bp upstream from the ATG start site, resulting
in an A>C transition, and other less frequent but recur-
rent mutations in cancer are found on chromosome 5 at
the following positions: 1,295,228 C>A; 1,295,248
1,295,243 CC>TT; and 1,295,161 A>C [46]. However,
when these mutations (-57 A>C, -124 C>T, -146 C>T)
are introduced into tumor cells (A375 melanoma cells,
UAGCC-62 melanoma cells, T24 bladder cancer cells)
using a luciferase reporter construct, only a ~1.5- to 2-fold
increase in ATERT transcription occurs [4, 45, 47]. Simi-
larly, Huang and colleagues [48] also demonstrated that
KWTERT promoter mutations C228T and C250T caused a
2.8-fold to 5.3-fold increase in transcription (using a lucif-
erase reporter assay in U87-MG@ cells) and telomerase acti-
vation using the telomere repeat amplification protocol
(TRAP) assay in both xenografts and primary tumor tis-
sues. It is not clear whether the observed enhanced h/TERT
transcription and increased level of AWTERT mRNA are
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Fig. 3 Telomerase assembly, recruitment to the telomere, and telomeric DNA synthesis. Telomerase is the cellular ribonucleoprotein enzyme
complex that catalyzes the extension of telomeric DNA in eukaryotic organisms. Telomerase action involves multiple steps including assembly of
the telomerase complex, its intracellular trafficking and finally recruitment to telomeres. Human telomerase is composed of hTR (\TERC—a template
functional RNA), hTERT (the catalytic protein component with reverse transcriptase activity), and the accessory proteins dyskerin, NOP10, NHP2, and
GARI1. hTERT protein associates with p23 and HSP90 in the cytoplasm, and moves to the nucleus. Nascent hTR transcripts complex with dyskerin,
NHP2, NOP10 and GAR1. This complex then undergoes Reptin and Pontin (ATPases)-mediated binding to hTERT + p23 + HSP90 complex. Then TCABI
attaches to this assembling complex and guides it to Cajal bodies in the nucleus. Telomerase recruitment to telomeres takes place during the S phase
of the cell cycle through interactions between the shelterin complex components TPP1 and POT1 and the DAT domain of hTERT. SRSF11 stabilizes the
association of the telomerase enzyme complex with the telomere overhang for DNA synthesis
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their respective sites and can promote hTERT transcription. Although binding

actually related to enhanced telomerase functional enzyme
activity and TL maintenance in tumor cells.

While AWTERT promoter mutations are frequent in
multiple non-epithelial cancer types and their distribu-
tion is similar in the majority of patients, Chiba and co-
workers [49] have emphasized that the impact of ”TERT
promoter mutations has mostly been studied in already
transformed immortal tumor cells with active telomerase
maintaining their telomeres. The tumor cells without
such mutations also have sufficient telomerase activity to
maintain their telomeres. Therefore, they introduced
three common ATERT promoter mutations (-57 A>C,
-124 C>T, -146 C>T) into isogenic human embryonic
stem cells (hESCs) using CRISPR/Cas9 genome editing,
and observed that in undifferentiated hESCs the pres-
ence of -124 C>T caused a 2- to 3-fold increase in
WTERT mRNA while neither the -57 A>C nor -146
C>T mutation had any effect on ATERT transcription
and none of the three mutations had a major influence
on telomerase activity. However, differentiated hESCs
(fibroblasts) harboring these mutations continued
WTERT transcription (8- to 12-fold increase) relative to

normal hESCs, which would downregulate telomerase
activity. Furthermore, telomerase activity in differenti-
ated fibroblasts carrying #”TERT promoter mutations was
comparable to that observed in cancer cell lines. Bell
and colleagues [50] proposed that GA-binding protein
(GABP), an ETS-binding transcription factor, in con-
junction with TERT promoter mutations, drives activa-
tion of KTERT. They have shown that C228T and C250T
transitions are necessary for ”TERT promoter activation,
as these generate an ETS motif, which is critically
important for the predominant binding of GABP to acti-
vate aberrant transcription in cancer cells. However, it is
not known whether GABP alone can activate hWTERT
promoter transcription or if it interacts with other ETS-
binding transcription factors. Recently, Li and co-
workers [51] have pointed out that ATERT promoter
mutations C228T and C250T are functionally different,
in that the C250T unlike the C228T mutation is regu-
lated by non-canonical NF-kB signaling, which is
required for sustained telomerase activity.

While these non-coding #TERT promoter mutations
are the most frequent promoter mutations in cancer, the
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level and frequency varies with cancer types (Table 1).
Some cancers, such as melanoma, pleomorphic dermal
sarcoma, myxoid liposarcoma, glioma, urothelial cell
carcinoma, carcinoma of the skin and liver cancer, have
the highest frequencies of TERT promoter mutations,
while low frequencies were noted in gastric cancer, pan-
creatic cancer, non-small-cell lung cancer and gastro-
intestinal stromal tumors [6, 45, 48]. One possible
explanation for these observations could be that incipi-
ent cancer cells, originating from rapidly self-renewing
telomerase-competent cells, do not require TERT pro-
moter mutations to regulate TL maintenance. Thus, can-
cers arising from these rapidly proliferating cells tend to
have less frequent #TERT promoter mutations and prob-
ably just stably upregulate enzyme activity that is revers-
ibly regulated in normal cells. By contrast, cancer-
initiating cells originating from cells with low self-
renewing capability may require TERT promoter muta-
tions to overcome the short-telomere-dependent prolif-
erative barrier. However, TERT promoter mutations have
not been detected in prostate cancer, a cancer of low
self-renewing tissue, suggesting that alterations within
the core promoter of the TERT gene do not play an im-
portant role in prostate carcinogenesis [52]. The com-
mon KTERT promoter mutations have been detected
across all stages and grades in most cancers, suggesting
that #”TERT mutations are generally an early event in the
process of carcinogenesis [49]. It will be interesting to
determine whether these mutations mostly occur during

Table 1 Frequency spectrum of hTERT promoter mutations
across diverse cancer types

Cancer type Mutation Reference
frequency (%)
Bladder carcinoma 47-85 [100]
Renal pelvic carcinoma 60-64 [101]
Urothelial carcinoma 47 [102]
Hepatocellular carcinoma 24-59 [6, 103]
Melanoma 67-85 (3]
Skin basal cell carcinoma 39-74 [104]
Thyroid cancer (papillary and 50-52 [105]
poorly differentiated carcinomas)
Myxoid liposarcoma 74-79 [106]
Glioblastoma 28-84 [6, 48]
Medulloblastoma 19-42 [107]
Oligoastrocytoma 25-53 [6, 1071
Oligodendroglioma 72 [44]
Breast cancer, colorectal cancer, 0-5 [48, 104]

medullary thyroid carcinoma, ovarian
cancer, esophageal adenocarcinoma,
acute myeloid leukemia, chronic lymphoid
leukemia, pancreatic cancer, prostate
cancer, testicular carcinoma, uterine

cervix cancer
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the period in which cells are undergoing crisis, in order
to establish the role of these mutations as early events in
the process of malignant transformation.

Telomerase expression also involves transcriptional,
post-transcriptional and epigenetic levels of control, which
may occur at any critical steps including transcription,
mRNA splicing, hTR and hTERT synthesis and matur-
ation, structural organization of telomerase RNP, nuclear
localization of telomerase, post-translational modifications,
and recruitment to the telomeres [53]. Epigenetic mecha-
nisms such as chromatin remodeling, DNA methylation
and histone modifications for regulation of #TERT tran-
scription have also been described [54, 55]. The expression
of WTERT is also regulated by post-transcriptional mecha-
nisms. The process of gene transcription leads to the gen-
eration of transcripts (sequence of pre-mRNA produced
by transcription) that are further modified into transla-
tional forms by several processes such as mRNA capping
(5'-cap), 3'-polyadenylation and alternative splicing. Alter-
native splicing of ”TERT mRNA has been shown to be a
key post-transcriptional regulatory mechanism [56] but it
remains unclear whether telomerase activity is directly as-
sociated with #TERT splicing.

Telomerase as a target for anticancer therapeutics
Telomerase has been a prime target for the development of
effective therapeutics against cancer as it is expressed in
the majority of cancer types as well as in cancer stem or
stem-like cells. In addition, normal human cells including
stem cells have lower telomerase activity and generally
maintain telomeres at longer lengths compared to cancer
cells. These features provide an advantage that ensures
minimum risk for possible telomere shortening in normal
cells. The main objective of anti-telomerase therapeutics is
to selectively induce apoptosis and cell death in cancer cells
while minimizing the effects on normal cells [57]. Multiple
approaches have been adopted to achieve this goal through
the development of vaccines, antisense oligonucleotides,
and small-molecule inhibitors targeting hTERT or hTR. Al-
though the oligonucleotide imetelstat (GRN163L) appears
to be the most promising telomerase inhibitor, Bryan and
colleagues [58] have reported a novel telomerase inhibitor,
BIBR1532, that binds to the thumb domain of TERT, dis-
rupting TERT-RNA binding (telomerase ribonucleopro-
tein assembly), leading to the inhibition of enzyme activity.
However, this compound has not yet progressed to clinical
trials. Additionally, development of G-quadruplex stabi-
lizers, tankyrase (which has an important role in telomere
homeostasis, mitotic spindle formation and WNT/B-ca-
tenin signaling) inhibitors and HSP90 (involved in signal
transduction, intracellular transport and protein degrad-
ation) inhibitors targeting telomere and telomerase assem-
bly, and T-oligo (DNA oligonucleotide homologous to the
telomere 3" overhang region, which causes cytotoxic effects
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by inducing DDR) have also been explored to selectively
kill cancer cells [59]. In addition, immunotherapies that use
dendritic cells (GRVAC1), hTERT peptide (GV1001) or
cryptic peptides (Vx-001) are being tested in clinical trials.
Several anti-telomerase agents (imetelstat and vaccines) are
currently undergoing different phases of clinical trials but
imetelstat is the only anti-telomerase compound that has
been extensively evaluated in clinical trials. Recently, the
US Food and Drug Administration (FDA) removed a long-
standing clinical hold on imetelstat and it is expected to
complete planned clinical trials (Table 2).

Developmental highlights of oligonucleotide
inhibitor imetelstat

Imetelstat is a competitive inhibitor of telomerase activity,
and was developed for the intravenous treatment of
various cancers. It consists of a 13-mer N3'—P5’ thio-
phosphoramidate oligonucleotide that is covalently
attached to a palmitoyl (C16 lipid) moiety through a 5'-
thio-phosphate group (Fig. 5a). The thio-phosphoramidate
backbone of imetelstat is responsible for its outstanding
features such as high aqueous solubility, acid and meta-
bolic stability, resistance to the action of nucleases, and
ability to form RNA duplexes [60]. The lipid moiety of
imetelstat provides high lipophilicity that enhances cellular
uptake, retention and drug efficacy [61]. Imetelstat does
not behave like a typical antisense oligonucleotide as it
does not bind to mRNA to inactivate it; rather its sequence
(5'-palmitate-TAGGGTTAGACAA-NH,-3") binds to a
complementary 13-nucleotide region of hTR that has high
affinity and specificity at the active site of the telomerase
holoenzyme, thus leading to complete inhibition of
enzyme activity (Fig. 5b).

Imetelstat has been extensively evaluated for its activity
and efficacy against multiple cancer cell lines and in
mouse xenograft models in preclinical studies. Imetelstat
demonstrated potent inhibitory action against telomerase,
causing shortening of telomeres in a large spectrum of
cancer cell lines derived from tumors of the bladder,
breast, lung, liver, prostrate and pancreas [62—64]. In vivo
preclinical studies in mouse models of human tumor xe-
nografts showed that the compound was well tolerated
and highly efficacious in inducing telomerase inhibition,
leading to reduced tumor growth, prevention of metasta-
sis, and sensitization of tumors to standard chemotherapy
[65]. Imetelstat was also found to efficiently prevent glio-
blastoma tumor growth in a xenograft model by crossing
the blood—brain barrier, probably owing to its highly lipo-
philic nature [66]. Additionally, simultaneous suppression
of homologous recombination and telomerase activity in a
mouse model of Barrett’s adenocarcinoma with the com-
bination of nilotinib (tyrosine kinase inhibitor) and imetel-
stat was reported to be more effective compared to either
compound alone [67].
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Imetelstat has been undergoing clinical trials for several
years, and while some trials have already been completed,
some were discontinued (breast and lung cancer, lympho-
proliferative disorders and polycythemia vera) because the
US FDA put these on hold due to hematological toxicity,
but a few are still continuing (Table 2). Recent clinical de-
velopment of imetelstat includes two studies, one with pa-
tients with myelofibrosis, referred to as the Initial MF
Study or the IMbark™ study, and one with patients with
myelodysplastic syndrome, called the MDS or IMerge™
study (Table 2). Currently, these studies are recruiting tar-
geted patients at various centers in the USA, Europe and
Asia.

Anti-telomerase immunotherapeutics
Telomerase is an attractive target for the development of
telomerase-based immunotherapy. In cancer cells, the
degradation of telomerase by proteasomes results in the
formation of protein fragments or peptides of telomerase
that are expressed on the tumor cell surface as antigens by
the human leukocyte antigen (HLA) class I pathway [68,
69], and these telomerase antigenic epitopes can be tar-
geted by cytotoxic T cells to destroy the tumor cells [70].
Telomerase-specific epitopes can induce CD4" or CD8"
cytotoxic T-lymphocyte responses or stimulate antigen-
presenting cells capable of attacking tumors [71] (Fig. 6).
Therefore, the rationale for anti-telomerase immunother-
apy is to sensitize the immune system to tumor cells ex-
pressing hTERT peptides to activate and generate hTERT-
specific CD8" cells to produce enhanced anti-tumor effects.
Two major strategies have been adopted to develop effect-
ive telomerase-based immunotherapy in cancer: an hTERT
vaccine approach and a dendritic cell approach to prime
antigen-presenting cells ex vivo. Three hTERT vaccines,
GV1001, Vx001 and GRNVAC]I, have been used to elicit
anti-telomerase immune responses in cancer patients [72].
GV1001 is a 16-amino-acid, HLA class Il-restricted
hTERT peptide that contains amino acid sequence 611—
626 (EAR-PALLTSRLRFIPK) of the hTERT active site
[73]. Granulocyte—monocyte colony-stimulating factor
(GM-CSF) or TLRY7 is used as adjuvant to carry GV1001.
The vaccine is endogenously processed to yield a HLA
class I peptide producing both CD4" and CD8" responses,
thus evoking strong cytotoxic T-lymphocyte activation
[74]. Another vaccine called Vx001 is a cryptic peptide
(functional peptides hidden in protein structures)-based
vaccine containing hTERT amino acid sequence YLF-
FYRKSV. The vaccine shows high affinity for HLA class I
and has demonstrated a significant immune response rate
in cancer patients [75, 76]. A dendritic-cell-based vaccine,
GRNVAC]I, consists of mature autologous dendritic cells
transduced with mRNA encoding hTERT and LAMPI.
LAMPI1 guides hTERT to lysosomes, where it is degraded
into small peptides, leading to a polyclonal immune



Table 2 Completed and ongoing clinical trials of imetelstat in cancer patients

Identifier code/ Indication Objective Start/ Design Results Sponsor
phase completion date
NCT00594126/ Refractory or relapsed Safety and MTD determination November 2007/ 3+ 3 cohort; dose DLT: thrombocytopenia, neutropenia, Geron
phase | multiple myeloma July 2011 escalation study anemia, aPTT prolongation, fatigue,
nausea, anorexia and dizziness.
NCT00732056/ Recurrent or metastatic Safety, MTD, efficacy in July 2008/ 3+ 3 cohort;dose DLT: thrombocytopenia, neutropenia. Geron
phase | breast cancer combination with paclitaxel March 2012 escalation study
and bevacizumab
NCT00310895/ Solid tumor malignancies Safety and MTD determination March 2006/ 3+ 3 cohort; DLT: thrombocytopenia, myelosuppression. Geron
phase | March 2013 dose escalation study
NCT 00718601 Multiple myeloma Safety and MTD determination July 2008/ 3+ 3 cohort; dose Results not available in public domain. Geron
phase | in combination with bortezomib October 2011 escalation study
and dexamethasone
NCT00124189/ Refractory chronic Safety, tolerability, dose-limiting July 2005/ Sequential dose cohort, Results not available in public domain. Geron
phase | lymphoproliferative toxicities, and MTD March 2013 open label, escalation
disease trial evaluating one infusion
duration of 2 h; weekly
intravenous infusion
NCT00510445/ Metastatic non-small- Safety, DLT, MTD in combination July 2007/ Dose cohorts with a Patients on imetelstat with short TL Geron
phase | cell lung cancer with a standard paclitaxel/carboplatin April 2011 minimum of 3 patients showed a trend towards longer median
regimen PFS as well as OS. However, imetelstat
treatment in patients with long TL had
no improvement in median PFS or OS.
ADRs: neutropenia and thrombocytopenia.
NCT01265927/ HER2™ breast cancer DLT in combination January 2011/ Open label, non- Results not available in public domain. Geron
phase | with trastuzumab October 2015 randomized study
NCT01242930/ Multiple myeloma Improved outcome in patients November 2010/ Imetelstat 2 h intravenous Results not available in public domain. Geron
phase |l previously treated with imetelstat. December 2015 Infusion on day 1 and day
8 of a 28-day cycle
NCT02598661/ Myelodysplastic syndrome Safety and efficacy November 2015/ Randomized, double blind Recruiting participants. Janssen
phase Il May 2019
IMerge™
NCT02426086/ Myelofibrosis Safety and efficacy June 2015/ Randomized, single-blind, Recruiting participants. Janssen
phase Il patients previously March 2018 multicenter
IMbark study treated with
JAK inhibitor
NCT01243073/ Essential thrombocythemia Safety and efficacy December 2010/ Open label, single group Eighteen patients, all with positive Geron
phase Il April 2015 hematologic response. Positive
molecular response in most patients
with JAK2 V617F mutation. ADRs:
neutropenia, anemia.
NCT01731951/ Myelofibrosis Efficacy October 2012/ Open label, parallel, Complete or partial remission in 21 % Janssen
phase Il January 2019 active, not recruiting patients. Bone marrow fibrosis was

reversed in a few patients.

ADR adverse drug reaction, aPTT activated partial thromboplastin time, DLT dose-limiting toxicity, MTD maximum tolerated dose, OS overall survival, PFS progression-free survival, TL telomere length
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with a thio-phosphoramidate backbone. The oligonucleotide sequence is complementary to the hTR component of telomerase and is responsible
for the inhibitory activity of imetelstat, whereas the thio-phosphoramidate backbone imparts resistance to the action of plasma and cellular nucleases.
b Action of imetelstat. Imetelstat binds to the hTR template region at the hTERT active site with high affinity and blocks its recruitment to telomeric DNA.
Imetelstat is a competitive telomerase template antagonist (not antisense that targets mRNA). Binding of imetelstat to hTR results in telomerase inhibition

leading to progressively shortened telomeres

response specific to all hTERT epitopes expressed by
patient tumors [77]. GRNVAC1 was found to be well
tolerated with no signs of autoimmunity after three or six
weekly injections and elicited robust immune response in
patients [78]. Currently, all these vaccines (GV1001,
GRNVAC1 and Vx001) are undergoing clinical trials in
cancer patients, and the hTERT-specific immune
responses elicited by these vaccines were found to be well
tolerated in the majority of patients (Table 3).

Clinical trial results have demonstrated that GRNVACI,
Vx001 and GV1001 are promising telomerase-targeting
vaccines capable of stimulating CD4" and CD8" responses
in telomerase-positive tumors, showing minimal effects
on normal cells and no autoimmunity. Large multicenter
studies are required to determine long-term toxicities in
patients. However, at present, it is not certain if any of
these vaccine candidates will progress to registration stud-
ies to get approval for clinical application.

Exploiting telomerase activity to selectively kill
cancer cells

A major challenge for anti-telomerase-directed therapy
is the long lag period required to observe enough TL
attrition to induce cell death. Telomere shortening
requires a series of cell division cycles to become appar-
ent, and treatment may have to be given continuously
for months to induce therapeutically relevant tumor re-
duction effects. During this treatment period, most
tumor cells will continue to grow, which may require
the use of other treatment modalities for successful clin-
ical outcomes. Importantly, with direct telomerase inhib-
itors, if the patient has hematological or any other
toxicities (for example, one concern with imetelstat is
the development of hematological toxicities requiring
drug holidays), then going off treatment for a few weeks
would reverse some of the benefits already obtai-
ned—the decision about treatment termination or
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Fig. 6 Anti-telomerase immunotherapy. Several telomerase-based vaccines have been developed, which sensitize immune cells to cancer cells
expressing hTERT peptides as surface antigens via the human leukocyte antigen (HLA) class | and class Il pathways. This results in an expansion of
telomerase-specific CD4* and CD8" cytotoxic T lymphocytes (CTLs) in cancer patients leading T cells to target and kill telomerase-positive tumor
cells. GV1001 is an MHC class Il-restricted hTERT peptide that is further processed by antigen presenting cells (APCs) to present as an MHC class |
peptide, and it produces both CD4*- and CD8-based immune responses. GRNVACT stimulates CD4" T cells to target and kill hTERT-expressing
tumor cells. Vx001 action is mediated by CD8" T cells

Table 3 Completed and ongoing clinical trials of anti-telomerase vaccines: current status

|dentifier code/ Indication Objective Start/completion  Results Sponsor/reference
phase date
NCT00510133/ Acute myelogenous Efficacy July 2007/August  GRNVACT was found Asterias Biotherapeutics
GRNVACT phase Il leukemia 2014 to be safe and well (http://asteriasbiotherapeutics.
tolerated. com/pipeline/ast-vac1/)
Positive immune responses
in 55 % of patients.
Toxicity: thrombocytopenia.
NCT01579188/ Non-small-cell lung Efficacy May 2012/ Ongoing. Kael-GemVax
GV1001 phase Ill cancer May 2016
NCT00425360/ Metastatic pancreatic  Efficacy in combination September 2006/  Adding GV1001 vaccination [108]
GV1001 phase Il cancer with chemotherapy March 2013 to chemotherapy did not

NCT01935154/
Vx001 phase Il

Non-small-cell lung
cancer

Efficacy August 2012/

December 2016

improve overall survival.

Active.

Vaxon Biotech (http://
www.clinicaltrials.gov)
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Box 2. Key outstanding research issues in cancer telomere and telomerase biology

Determining mechanism(s) of escape from crisis: Cells in crisis undergo tremendous genomic instability due to bridge—fusion—
breakage cycles. However, many molecular details remain unclear. What are the molecular features of cells that escape crisis? Do they
have hTERT promoter mutations? Why do incipient cancer cells during crisis acquire stem cell-like properties?

hTERT promoter mutations: Some believe that hTERT promoter mutations drive carcinogenesis, while others believe that promoter
mutations are only permissive for tumor growth maintenance. How these widespread hTERT promoter mutations regulate hTERT
expression during cellular transformation is not fully understood.

Telomerase holoenzyme assembly: Although there has recently been progress on determining the yeast and ciliate telomerase
structure, the processes of assembly and function of telomerase in human cancer cells remain poorly understood.

Recruitment of human telomerase to telomeres in cancer cells: The recruitment of telomerase to telomeres is highly regulated and
occurs only after the replication fork remodels protected DNA 3" ends during the S phase of the cell cycle. It involves protein—protein
interactions between the shelterin complex components TPP1 and POT1 and the DAT domain of hTERT. TPP1 contains an N-terminal
OB-fold domain containing a patch of amino acids termed the Tel patch that directly

interacts with the telomerase DAT domain [40]. However, the signaling pathways that regulate telomerase recruitment in human
cancer cells are not clearly understood. The telomerase

recruitment process is likely regulated by as yet unknown signaling pathways.

Shelterin protein complex: Emerging evidence suggests a crucial role for shelterin components in cancer progression, but how these
components are regulated during different stages of cancer development is not well understood.

Alternative lengthening of telomeres: Recently, knowledge about ALT has increased significantly. The chromatin remodeling factor
ATRX acts as a suppressor of ALT in normal cells and mutations in ATRX and DAXX contribute to activation of ALT [28, 91]. However,
knockdown of ATRX is not sufficient to trigger the ALT pathway in telomerase-positive cell lines or to directly activate ALT in normal
somatic cells, implying the existence of other necessary contributing factors involved in activation of ALT in cancer cells [92, 93]. Thus,
many key questions remain

unanswered, such as why ALT is more frequent in certain cancer subtypes? How does ATRX/DAXX repress ALT and what is the molecular
basis of its activation in cancer cells with wild-type ATRX/DAXX? What is the function of variant DNA repeats in ALT? How does RAD51

organized in ALT telomeres?

interact with the 5" overhang of ALT telomeric DNA to facilitate its invasion into homologous DNA, and how are shelterin proteins

Answers to these questions may facilitate development of mechanism-based inhibitors for ALT-positive cancers.

stopping treatment for a short duration may depend
upon the risk—benefit ratio in terms of efficacy and man-
ifested toxicity.

Therefore, novel fast-acting therapeutic agents that can
inhibit telomerase activity would be highly desirable. One
such strategy is not to target telomerase directly but to
introduce a modified nucleoside into cells so that telomer-
ase would preferentially incorporate it into telomeric DNA.
An altered nucleotide incorporated into telomeres would
not bind to shelterin proteins efficiently and should lead to
telomere dysfunction and rapid cell death. Mender
and colleagues [79] have recently demonstrated that, in
telomerase-positive cells, 6-thio-2"-deoxyguanosine (6-thio-
dG), a nucleoside analogue of 6-thioguanine (an approved
drug), is recognized by telomerase and incorporated into
telomeres. This results in altered telomere organization and
activation of telomere-associated DNA damage signals
called telomere dysfunction-induced foci, and rapid cell
death. The nucleoside analogue 6-thio-dG has been evalu-
ated against cell lines and in vivo. Treatment with 6-thio-

dG resulted in rapid cell death, whereas normal
telomerase-silent (telomerase-negative) human fibroblasts
and normal human colonic epithelial cells were largely un-
affected. In in-vivo studies, 6-thio-dG treatment caused
significant reduction in tumor growth rates and was super-
ior to 6-thioguanine treatment. Additionally, mice treated
with 6-thio-dG at effective doses for a month did not show
any hematological, hepatic or renal side effects. Thus, a
telomerase-mediated telomere-disrupting approach may
provide a safe and efficacious option for the treatment of
cancer [80].

Conclusions and future perspectives

Telomere maintenance has been extensively studied, and
our understanding of the role of telomerase and ALT in
cancer has improved remarkably in recent years. It is
becoming clear how cancer cells regulate different mo-
lecular events involved in telomere maintenance to
expand their proliferative capacity. Recent insights into
the control of telomerase activity at telomeres, through
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Box 3. Telomere biology-based potential novel targets
for the development of anticancer agents

Inhibition of the Tel patch to block telomerase recruitment
to telomeres: The “Tel patch’, a specific amino acid sequence
in the OB-fold domain of shelterin complex protein TPP1, is
involved in telomerase binding, recruitment, enzyme processivity
and telomere elongation. Thus, inhibition of telomerase
recruitment may result in cell death [94].

Inhibition of telomerase non-canonical function mediators:
In addition to telomere maintenance, telomerase may also be
involved in other important activities such as regulating gene
expression, mitochondrial activity, cell proliferation, apoptosis,
epithelial-mesenchymal transitions and DNA damage repair.
These non-canonical putative telomerase functions may be
mediated through a network of “feed forward signaling
loops” [95]. Interventions targeting the molecules involved in
non-telomeric functions of telomerase may be a rational approach
for cancer treatment.

Inhibition of TRF1 shelterin protein: TRF1 is overexpressed in
many cancer types and plays a central role in controlling
replication of telomeric DNA. The genetic abrogation of TRF1
leads to a marked reduction in lung carcinoma tumor growth in
the K-Ras®’?” lung cancer mouse model due to acute telomere
uncapping independent of telomere length [96]. However, it is
not clear what effects targeting shelterin proteins would have
on normal cells.

Inhibition of ATM kinase: The ATM kinase plays a crucial role
in the cellular response to telomere dysfunction-mediated DNA
damage and subsequent repair pathways. ATM has recently
been shown to be required for the addition of telomeric DNA
repeats to telomeres and telomere elongation by telomerase in
human cells. Blocking ATM inhibits telomere elongation and
inhibition of PARP1, which activates ATM and increases telomere
elongation [97]. ATM may regulate telomerase access to telomeres
through interaction with TRF1 [98].

Inhibition of alternative splicing of mRNA of hTERT: The
human TERT gene produces numerous alternatively spliced
variants with a few isoforms capable of producing full-length
catalytically active telomerase. A fuller understanding of the
process of alternative splicing may lead to the development of
molecules to inhibit the generation of full-length telomerase
and be a new approach to telomerase therapy in cancer [56].
Inhibition of TERT RNA-binding domain (tTRBD): TERT
protein binds to the template boundary element of TR (TERQ),
crucial for the recognition of the precise telomere sequence to
be reverse transcribed by TERT [99]. This is a potential intervention
target, but this discovery needs to be established in human cells.
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telomerase—shelterin interactions, by regulating telomer-
ase recruitment or productive substrate engagement at
the enzyme active site, have highlighted opportunities for
the development of novel diagnostic tools and effective
anticancer agents. Furthermore, recent knowledge gained
about the mechanisms underlying the non-canonical func-
tions of telomerase has significantly improved our under-
standing of the role of telomerase in cancer progression.
However, further research efforts are needed to obtain an
in-depth understanding of ZTERT activation in the initial
stages of carcinogenesis, and the various genetic and epi-
genetic mechanisms involved in its regulation. While the
recurrent #TERT promoter mutations are highly frequent
in many cancers and play a pivotal role in the induction of
telomerase reactivation in cancer cells, much remains to
be learned about the sufficiency or necessity of hTERT
promoter mutations in cancer initiation and progression.
It is still not established whether telomerase expression
has any oncogenic characteristics or is simply required for
the maintenance of sustained tumor growth (that is,
whether it is permissive). Moreover, there are many other
unresolved questions regarding telomeres and telomerase
function that deserve further investigation (Box 2). Al-
though target-based compounds have greatly benefited
patients who have tumors with specific oncogenic muta-
tions, such as EGFR mutation, HER2 amplification, or
mutations resulting in ALK expression or KIT expression,
the vast majority of common tumors remain less respon-
sive to these target-based drugs. Therefore, novel targeted
interventions are required and telomerase inhibition re-
mains a promising strategy for cancer treatment. Recent
advances in telomere biology are beginning to unravel
potential new telomerase targets (Box 3) for the design of
novel molecules targeting the activity of this key enzyme.

Clinical trials with telomerase inhibitors have established
telomerase as a viable target, but the time lag between drug
administration and clinical response is long. Continued
treatment is required for successful clinical outcome, which
may lead to severe toxicity in patients. Therefore, a major
challenge is to develop a telomerase inhibitor that rapidly
kills telomerase-positive tumor cells while sparing normal
telomerase-carrying cells.

Abbreviations

ALT, alternative lengthening of telomeres; bp, base pairs; DAT, dissociates the
activities of telomerase; DDR, DNA damage response; FDA, Food and Drug
Administration; GM-CSF, granulocyte-monocyte colony-stimulating factor;
hESC, human embryonic stem cell; kb, kilobases; OB, oligonucleotide/
oligosaccharide-binding; TERRA, telomeric repeat-containing RNA; T-loop,
telomeric loop; TL, telomere length; TPE, telomere position effect; TSS,
transcription start site

Acknowledgements

The laboratory of JWS is supported by the National Cancer Institute (Lung
SPORE P50CA70907), ROTAG001228 from the National Institutes of Health,
and a distinguished chair from the Southland Financial Foundation in



Jafri et al. Genome Medicine (2016) 8:69

Geriatrics Research. This work was performed in laboratories constructed
with support from National Institutes of Health grant CO6 RR30414.

Authors’ contributions

MAJ wrote manuscript and SAA drew the figures; MHA provided inputs into
manuscript writing and JWS edited and finalized the manuscript. All authors
read and approved the final manuscript.

Competing interests

The authors declare that they have no competing interests.
Published online: 20 June 2016

References

1. Akincilar SC, Unal B, Tergaonkar V. Reactivation of telomerase in cancer. Cell
Mol Life Sci. 2016;73:1659-70.

2. Shay JW. Are short telomeres predictive of advanced cancer? Cancer Discov.

2013;3:1096-8.

3. Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, et al. TERT
promoter mutations in familial and sporadic melanoma. Science. 2013;339:
959-61.

4. Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent
TERT promoter mutations in human melanoma. Science. 2013;339:957-9.

5. Vinagre J, Almeida A, Popula H, Batista R, Lyra J, Pinto V, et al. Frequency of
TERT promoter mutations in human cancers. Nat Commun. 2013;4:2185.

6.  Killela PJ, Reitman ZJ, Jiao Y, Bettegowda C, Agrawal N, Diaz LA, et al. TERT
promoter mutations occur frequently in gliomas and a subset of tumors
derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A.
2013;110:6021-6.

7. Borah S, Xi L, Zaug AJ, Powell NM, Dancik GM, Cohen SB, et al. TERT
promoter mutations and telomerase reactivation in urothelial cancer.
Science. 2015;347:1006-10.

8. Picariello L, Grappone C, Polvani S, Galli A. Telomerase activity: an attractive
target for cancer therapeutics. World J Pharmacol. 2014;3:86-96.

9. Klewes L, Vallente R, Dupas E, Brand C, Gru D, Guffei A, et al. Three-dimentional

nuclear telomere organization in multiple myeloma. Transl Oncol. 2013;6:749-56.

10.  Doksani Y, Wu JY, de Lange T, Zhuang X. Super-resolution fluorescence
imaging of telomeres reveals TRF2-dependent T-loop formation. Cell.
2013;155:345-56.

11. Amoult N, Karlseder J. Complex interaction between the DNA-damage
response and mammalian telomeres. Nat Struct Mol Biol. 2015;22:859-66.

12. Zimmermann M, Kibe T, Kabir S, de Lange T. TRF1 negotiates TTAGGG
repeat-associated replication problems by recruiting the BLM helicase and
the TPP1/POT1 repressor of ATR signaling. Gene Dev. 2014;28:2477-91.

13. Denchi EL, de Lange T. Protection of telomeres through independent
control of ATM and ATR by TRF2 and POT1. Nature. 2007;448:1068-71.

14.  Frescas D, de Lange T. TRF2-tethered TIN2 can mediate telomere protection
by TPP1/POT1. Mol Cell Biol. 2014;34:1349-62.

15.  Frescas D, de Lange T. Binding of TPP1 protein to TIN2 protein is required
for POT1 protein-mediated telomere protection. J Biol Chem.
2014;289:24180-7.

16.  Janouskova E, Necasova I, Pavlouskova J, Zimmermann M, Hluchy M, Marini
V, et al. Human Rap 1 modulates TRF2 attraction to telomeric DNA. Nucleic
Acids Res. 2015;43:2691-700.

17. Pedram M, Sprung CN, Gao Q, Lo AW, Reynolds GE, Murnane JP. Telomere
position effect and silencing of transgenes near telomeres in the mouse.
Mol Cell Biol. 2006;26:1865-78.

18. Robin JD, Ludlow AT, Batten K, Magdinier F, Stadler G, Wagner KR, et al.
Telomere position effect: regulation of gene expression with progressive
telomere shortening over long distances. Genes Dev. 2014;28:2464-76.

19.  Cusanelli £, Chartrand P. Telomeric repeat-containing RNA TERRA: a noncoding
RNA connecting telomere biology to genome integrity. Front Genet. 20156:143.

20. Arora R, Lee Y, Wischnewski H, Brun CM, Schwarz T, Azzalin CM. RNaseH1
regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT
tumour cells. Nat Commun. 2014;5:5220.

21. Eid R, Demattei MV, Episkopou H, Auge-Gouillou C, Decottignies A, Grandin
N, Charbonneau M. Genetic inactivation of ATRX leads to a decrease in the
amount of telomeric cohesin and of telomere transcription in human
glioma cells. Mol Cell Biol. 2015;35:2818-30.

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33

34.

35.

36.

37.

38.

39.

40.

42.

43.

44,

45.

46.

47.

Page 16 of 18

Bourgeron T, Xu Z, Doumic M, Teixeira MT. The asymmetry of telomere
replication contributes to replicative senescence heterogeneity. Sci Rep.
2015;5:15326.

Wright WE, Pereira-Smith OM, Shay JW. Reversible cellular senescence:
implications for immortalization of normal human diploid fibroblasts. Mol
Cell Biol. 1989,9:3088-92.

Hayashi MT, Cesare AJ, Rivera T, Karlseder J. Cell death during crisis is
mediated by mitotic telomere deprotection. Nature. 2015;522:492-6.
Castro-Vega LJ, Jouravleva K, Ortiz-Montero P, Liu WY, Galeano JL, Romero
M, et al. The senescent microenvironment promotes the emergence of
heterogeneous cancer stem-like cells. Carcinogenesis. 2015;36:1180-92.
Shay JW, Wright WE. Role of telomeres and telomerase in cancer. Semin
Cancer Biol. 2011;21:349-53.

Dilley RL, Greenberg RA. Alternative telomere maintenance and cancer.
Trends Cancer. 2015;1:145-56.

Napier CE, Huschtscha LI, Harvey A, Bower K, Noble JR, Hendrickson EA,
et al. ATRX represses alternative lengthening of telomeres. Oncotarget.
2015;6:16543-58.

O'Sullivan RJ, Almouzni G. Assembly of telomeric chromatin to create
alternative endings. Trends Cell Biol. 2014;24:675-85.

Flynn RL, Cox KE, Jeitany M, Wakimoto H, Bryll AR, Ganem NJ, et al. Alternative
lengthening of telomeres renders cancer cells hypersensitive to ATR inhibitors.
Science. 2015347:273-7.

Zhang Q, Kim NK, Feigon J. Architecture of human telomerase RNA. Proc
Natl Acad Sci U S A. 2011;108:20325-32.

Ghosh A, Saginc G, Leow SC, Khattar E, Shin EM, Yan TD, et al. Telomerase
directly regulates NF-kB-dependent transcription. Nat Cell Biol.
2012;14:1270-81.

Koh CM, Khattar E, Leow SC, Liu CY, Muller J, Ang WX, et al. Telomerase
regulates MYC-driven oncogenesis independent of its reverse transcriptase
activity. J Clin Invest. 2015;125:2109-22.

Liu H, Liu Q, Ge Y, Zhao Q, Zheng X, Zhao Y. hTERT promotes cell
adhesion and migration independent of telomerase activity. Sci Rep.
2016,6:22886.

Liu Z Li K, Chen L, Li W, Hou M, Liu T, et al. Telomerase reverse
transcriptase promotes epithelial-mesenchymal transition and stem cell-like
traits in cancer cells. Oncogene. 2013;32:4203-13.

Masutomi K, Kaneko S, Hayashi N, Yamashita T, Shirota Y, Kobayashi K,
Murakami S. Telomerase activity reconstituted in vitro with purified human
telomerase reverse transcriptase and human telomerase RNA component. J
Biol Chem. 2000,275:22568-73.

Venteicher AS, Abreu EB, Meng Z, McCann KE, Terns RM, Veenstra TD, et al.
A human telomerase holoenzyme protein required for Cajal body
localization and telomere synthesis. Science. 2009;323:644-8.

Veinteicher AS, Meng Z, Mason PJ, Veenstra TD, Artandi SE. Identification of
ATPases pontin and reptin as telomerase components essential for
holoenzyme activity. Cell. 2008;132:945-57.

Hockemeyer D, Collins K. Control of telomerase action at human telomeres.
Nat Struct Mol Biol. 2015;22:848-52.

Schmidt JC, Dalby AB, Cech TR. Identification of human TERT elements
necessary for telomerase recruitment to telomeres. Elife. 2014;3:e03563.
Lee JH, Jeong SA, Khadka P, Hong J, Chung IK. Involvement of SRSF 11 in
cell cycle-specific recruitment of telomerase to telomeres at nuclear
speckles. Nucleic Acids Res. 2015;43:8435-51.

Schmit JC, Cech TR. Human telomerase: biogenesis, trafficking, recruitment
and activation. Genes Dev. 2015;29:1095-105.

Hsu C, Lee L, Tang S, Hsin I, Lin Y, Ko J. Epidermal growth factor activates
telomerase activity by direct binding of Ets-2 to hTERT promoter in lung
cancer cells. Tumor Biol. 2015;36:5389-98.

Chan AK, Yao Y, Zhenyu Z, Chung NY, Liu JS, Ka-Wai, et al. TERT promoter
mutations contribute to subset prognostication of lower-grade gliomas.
Modern Pathol. 2015;28:177-86.

Huang FW, Bielski CM, Rinne ML, Hahn WC, Seller WR, Stegmeier F, et al.
TERT promoter mutations and monoallelic activation of TERT in cancer.
Oncogenesis. 20154:e176.

Heidenreich B, Rachakondan PS, Hemmink K, Kumar R. TERT promoter
mutations in cancer development. Curr Opin Genet Dev. 2014;24:30-7.
Allory Y, Beukers W, Sagrera A, Flandez M, Marquez M, van der Keur KA,

et al. Telomerase reverse transcriptase promoter mutations in bladder
cancer: high frequency across stages, detection in urine, and lack of
association with outcome. Eur Urol. 2014;65:360-6.



Jafri et al. Genome Medicine (2016) 8:69

48.

49.

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Huang D, Wang Z, Heb XJ, Diplas BH, Yang R, Killela PJ. Recurrent TERT
promoter mutations identified in a large-scale study of multiple tumor
types are associated with increased TERT expression and telomerase
activation. Eur J Cancer. 2015;51:969-76.

Chiba K, Johnson JZ, Vogan JM, Wagner T, Boyle JM, Hockemeyer D.
Cancer-associated TERT promoter mutations abrogate telomerase
silencing. Elife. 2015;4:€7918.

Bell RJA, Rube HT, Kreig A, Mancini A, Fouse SD, Nagarajan RP, et al. The
transcription factor GABP selectively binds and activates the mutant TERT
promoter in cancer. Science. 2015;348:1036-9.

Li'Y, Zhou Q, Sun W, Chandrasekharan P, Cheng H, Ying Z. Non-canonical
NF-kB signalling and ETS1/2 cooperatively drive C250T mutant TERT
promoter activation. Nat Cell Biol. 2015;17:1327-38.

Stoer R, Taubert H, Zinnall U, Gied! J, Gaisa NT, Burger M, et al. Frequency of
TERT promoter mutations in prostate cancer. Pathobiology. 2015;82:53-7.
Cong YS, Wright WE, Shay JW. Human telomerase and its regulation.
Microbiol Mol Biol Rev. 2002;66:407-25.

Renaud S, Loukinov D, Abdullaev Z, Guilleret |, Bosman FT, Lobanenkov V,
et al. Dual role of DNA methylation inside and outside of CTCF-binding
regions in the transcriptional regulation of the telomerase hTERT gene.
Nucleic Acids Res. 2007;35:1245-56.

Lai SR, Phipps SM, Liu L, Andrews LG, Tollefsbol TO. Epigenetic control of
telomerase and modes of telomere maintenance in aging and abnormal
systems. Front Biosci. 2005;10:1779-96.

Wong MS, Wright WE, Shay JW. Alternative splicing regulation of
telomerase: a new paradigm. Trends Genet. 2014;30:430-8.

Buseman CM, Wright WE, Shay JW. Is telomerase a viable target in cancer?
Mutat Res. 2012;730:90-7.

Bryan C, Rice C, Hoffman H, Harkisheimer M, Sweeney M, Skordalakes E.
Structural basis of telomerase inhibition by the highly specific BIBR1532.
Structure. 2015;23:1934-42.

Cruz J, Wojdyla L, Ivancich M, Puri N. Targeting the telomere with T-oligo,
G-quadruplex stabilizers, and tankyrase inhibitors. J Cancer Sci Ther. 2014,6:10.
Jackson SR, Zhu CH, Paulson V, Watkins L, Dikmen ZG, Gryaznov SM, et al.
Antiadhesive effects of GRN163L—an oligonucleotide N3'—P5' thio-
phosphoramidate targeting telomerase. Cancer Res. 2007;67:1121-9.
Herbert BS, Gellert GC, Hochreiter A, Pongracz K, Wright WE, Zielinska D,

et al. Lipid modification of GRN163, an N3'—P5' thio-phosphoramidate
oligonucleotide, enhances the potency of telomerase inhibition. Oncogene.
2005;24:5262-8.

Marian CO, Wright WE, Shay JW. The effects of telomerase inhibition on
prostate tumor-initiating cells. Int J Cancer. 2010;127:321-31.

Burchett KM, Yan Y, Ouellette MM. Telomerase inhibitor imetelstat (GRN163L)
limits the lifespan of human pancreatic cancer cells. PLoS One. 2014;9:e85155.
Hu Y, Bobb D, He J, Hill AD, Dome JS. The HSP90 inhibitor alvespimycin
enhances the potency of telomerase inhibition by imetelstat in human
osteosarcoma. Cancer Biol Ther. 2015;16:949-57.

Dikmen ZG, Gellert GC, Jackson SR, Gryaznov SM, Tressler R, Dogan P, et al.
In vivo inhibition of lung cancer by GRN163L: a novel telomerase inhibitor.
Cancer Res. 2005,65:7866-73.

Marian CO, Cho SK, McEllin BM, Maher EA, Hatanpaa KJ, Madden CJ, et al.
The telomerase antagonist, imetelstat, efficiently targets glioblastoma
tumor-initiating cells leading to decreased proliferation and tumor growth.
Clin Cancer Res. 2010;16154-63.

Lu R, Pal J, Buon L, Nanjappa P, Shi J, Fulciniti M, et al. Targeting homologous
recombination and telomerase in Barrett's adenocarcinoma: impact on
telomere maintenance, genomic instability and tumor growth. Oncogene.
2014;33:1495-505.

Vonderheide RH, Hahn WC, Schultze JL, Nadler LM. The telomerase catalytic
subunit is a widely expressed tumor-associated antigen recognized by
cytotoxic T lymphocytes. Immunity. 1999;10:673-9.

Lev A, Denkberg G, Cohen CJ, Tzukerman M, Skorecki KL, Chames P, et al.
Isolation and characterization of human recombinant antibodies
endowed with the antigen-specific, major histocompatibility complex-
restricted specificity of T cells directed toward the widely expressed
tumor T-cell epitopes of the telomerase catalytic subunit. Cancer Res.
2002;62:3184-94.

Vonderheide RH. Telomerase as a universal tumor-associated antigen for
cancer immunotherapy. Oncogene. 2002;21:674-9.

Vonderheide RH. Prospects and challenges of building a cancer vaccine
targeting telomerase. Biochimie. 2008;90:173-80.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.
82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

Page 17 of 18

Ruden M, Puri N. Novel anticancer therapeutics targeting telomerase.
Cancer Treat Rev. 2013;39:444-56.

Kyte JA. Cancer vaccination with telomerase peptide. Expert Opin Investig
Drugs. 2009;18:687-94.

Brunsvig PF, Aamdal S, Gjertsen MK, Kvalheim G, Markowski-grimsrud CJ,
Sve |, et al. Telomerase peptide vaccination: a phase I/Il study in patients
with non-small cell lung cancer. Cancer Immunol Immunother.
2006;55:1553-64.

Georgoulias V, Douillard JY, Khayat D, Manegold C, Rosell A, Menez-Jamet J,

et al. A multicenter randomized phase IIb efficacy study of Vx-001, a peptide-
based cancer vaccine as maintenance treatment in advanced non-small-cell
lung cancer: treatment rationale and protocol dynamics. Clin Lung Cancer.
2013;14:461-6.

Kotsakis A, Papadimitraki E, Vetsika EK, Aggouraki D, Dermitzaki EK, Hatzidaki
D, et al. A phase Il trial evaluating the clinical and immunologic response of
HLA-A2* non-small cell lung cancer patients vaccinated with an hTERT
cryptic peptide. Lung Cancer. 2014;86:59-66.

Ouellette MM, Wright WE, Shay JW. Targeting telomerase-expressing cancer
cells. J Cell Mol Med. 2011;15:1433-42.

Su Z, Dannull J, Yang BK, Dahm P, Coleman D, Yancey D, et al. Telomerase
mRNA-transfected dendritic cells stimulate antigen-specific CD8" and CD4*
T cell responses in patients with metastatic prostate cancer. J Immunol.
2005;174:3798-807.

Mender |, Gryaznov S, Dikmen ZG, Wright WE, Shay JW. Induction of
telomere dysfunction mediated by the telomerase substrate precursor 6-
thio-2"-deoxyguanosine. Cancer Discov. 2015;5:82-95.

Mender I, Gryaznov S, Shay JW. A novel telomerase substrate
precursor rapidly induces telomere dysfunction in telomerase positive
cancer cells but not in telomerase silent normal cells. Oncoscience.
2015;2:693-5.

Muller HJ. The remaking of chromosomes. Collecting Net. 1938;13:181-98.
McClintock B. The stability of broken ends of chromosomes in Zea mays.
Genetics. 1941,26:234-82.

Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains.
Exp Cell Res. 1961;25:585-621.

Watson JD. Origin of concatemeric T7 DNA. Nat New Biol. 1972,239:197-201.
Olovnikov AM. A theory of marginotomy. The incomplete copying of
template margin in enzymic synthesis of polynucleotides and biological
significance of the phenomenon. J Theor Biol. 1973;41:181-90.

Blackburn EH, Gall JG. A tandemly repeated sequence at the termini of the
extrachromosomal ribosomal RNA genes in Tetrahymena. J Mol Biol. 1978;
120:33-53.

Greider CW, Blackburn EH. Identification of a specific telomere terminal
transferase activity in Tetrahymena extracts. Cell. 1985;43:405-13.

Morin GB. The human telomere terminal transferase enzyme is a
ribonucleoprotein that synthesizes TTAGGG repeats. Cell. 1989,59:521-9.
Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, et al. Specific
association of human telomerase activity with immortal cells and cancer.
Science. 1994,266:2011-5.

Bodnar AG, Ouellete M, Frolkis M, Holt SE, Chiu C-P, Morin GB, et al.
Extension of lifespan by introduction of telomerase in normal human cells.
Science. 1998;279:349-52.

Clynes D, Jelinska C, Xella B, Ayyub H, Scott C, Mitson M, et al. Suppression
of the alternative lengthening of telomere pathway by the chromatin
remodelling factor ATRX. Nat Commun. 2015,6:7538.

Heaphy CM, de Wilde RF, Jiao Y, Klein AP, Edil BH, Shi C, et al. Altered
telomeres in tumors with ATRX and DAXX mutations. Science. 2011;333:425.
Bower K, Napier CE, Cole SL, Dagg RA, Lau LMS, Duncan EL, et al. Loss of
wild-type ATRX expression in somatic cell hybrids segregates with
activation of alternative lengthening of telomeres. PLoS One. 2012;7:250062.
Nakashima M, Nandkumar J, Sullivan KD, Espinosa JM, Cech TR. Inhibition of
telomerase recruitment and cancer cell death. J Biol Chem. 2013;288:33171-80.
Li 'Y, Tergaonkar V. Noncanonical functions of telomerase: implications in
telomerase-targeted cancer therapies. Cancer Res. 2014;74:1639-44.
Garcia-Beccaria M, Martinez P, Mendez-Pertuz M, Martinez S, Blanco-Aparicio
C, Canamero M. Therapeutic inhibition of TRF1 impairs the growth of p53-
deficient K-Ras®'*-induced lung cancer by induction of telomeric DNA
damage. EMBO Mol Med. 2015;7:930-49.

Lee SS, Bohrson C, Pike AM, Wheelan SJ, Greider CW. ATM kinase is
required for telomere elongation in mouse and human cells. Cell Rep.
2015;13:1623-32.



Jafri et al. Genome Medicine (2016) 8:69

98.

99.

100.

101.

102.

103.

104.

105.

106.

108.

Tong AS, Stern JL, Sfeir A, Kartawinata M, de Lange T, Zhu XD, et al. ATM
and ATR signaling regulate the recruitment of human telomerase to
telomeres. Cell Rep. 2015;13:1633-46.

Jansson LI, Akiyama BM, Ooms A, Lu C, Rubin SM, Stone MD. Structural
basis of template-boundary definition in Tetrahymena telomerase. Nat
Struct Mol Biol. 2015,22:883-8.

Rachkonda PS, Hosen |, de Verdier PJ, Fallah M, Heideneich B, Ryk C, et al.
TERT promoter mutations in bladder cancer affect patient survival and
disease recurrence through modification by a common polymorphism. Proc
Natl Acad Sci U S A. 2013;110:17426-31.

Wang K, Liu T, Liu L, Liu J, Liu C, Wang C, et al. TERT promoter mutations in
renal cell carcinoma and upper tract urothelial carcinomas. Oncotarget.
2014;5:1829-36.

Wang K, Liu T, Ge N, Liu L, Yuan X, Liu J, et al. TERT promoter mutations are
associated with distant metastases in upper tract urothelial carcinomas and
serve as urinary biomarkers detected by a sensitive castPCR. Oncotarget.
2014;5:12428-39.

Cevlik D, Yildiz G, Ozturk M. Common telomerase reverse transcriptase
promoter mutations in hepatocellular carcinomas from different
geographical locations. World J Gastroenterol. 2015221:311-17.

Vinagre J, Pinto V, Celestino R, Reis M, Populo H, Boaventura P, et al.
Telomerase promoter mutations in cancer: an emerging molecular
biomarker? Virchows Arch. 2014;465:119-33.

Liu X, Bishop J, Shan Y, Pai S, Liu D, Murugan AK, et al. Highly prevalent
TERT promoter mutations in aggressive thyroid cancers. Endocr Relat
Cancer. 2013;20:603-10.

Koelsche C, Renner M, Hartmann W, Brandt R, Lehner B, Waldburger N, et al.
TERT promoter hotspot mutations are recurrent in myxoid liposarcomas but
rare in other soft tissue sarcoma entities. J Exp Clin Cancer Res. 2014;33:33.

. Koelsche C, Sahm F, Capper D, Reuss D, Stum D, Jones DT, et al.

Distribution of TERT promoter mutations in pediatric and adult tumors of
the nervous system. Acta Neuropathol. 2013;126:907-15.

Middleton G, Silcocks P, Cox T, Valle J, Wadsley J, Propper D, et al. Gemcitabine
and capecitabine with or without telomerase peptide vaccine GV1001 in
patients with locally advanced or metastatic pancreatic cancer: an open-label,
randomised, phase 3 trial. Lancet Oncol. 2014;15:829-40.

Page 18 of 18



	Abstract
	Background
	Telomeres: organization, function and association with cancer
	Telomerase: the key telomere length maintenance mechanism
	The role of telomerase in cancer: TERT promoter mutations and telomerase reactivation
	Telomerase as a target for anticancer therapeutics
	Developmental highlights of oligonucleotide inhibitor imetelstat
	Anti-telomerase immunotherapeutics
	Exploiting telomerase activity to selectively kill cancer cells
	Conclusions and future perspectives
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Competing interests
	References

