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a b s t r a c t

A numerical method for solving nonlinear Fredholm integro-differential equations is pro-
posed. The method is based on hybrid function approximations. The properties of a hybrid
of block pulse functions and orthonormal Bernstein polynomials are presented and utilized
to reduce the problem to the solution of nonlinear algebraic equations. Numerical exam-
ples are introduced to illustrate the effectiveness and simplicity of the present method.
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1. Introduction

Integro-differential equations are often involved in mathematical formulations of physical phenomena. Fredholm
integro-differential equations play an important role in many fields such as economics, biomechanics, control, elasticity,
fluid dynamics, heat andmass transfer, oscillation theory, and airfoil theory; see, for example, [1–3] and the references cited
therein. Finding numerical solutions for Fredholm integro-differential equations is one of the oldest problems in applied
mathematics. Numerous works have been focusing on the development of more advanced and efficient methods for solving
integro-differential equations such as the wavelet method [4,5], Walsh function method [6], sinc-collocation method [7],
homotopy analysis method [8], differential transformmethod [9], using hybrid Legendre polynomials and block pulse func-
tions [10], Chebyshev polynomial method [11], and the Bernoulli matrix method [12].

Block pulse functions have been studied and applied extensively as a basic set of functions for signal and function approx-
imations. All these studies and applications show that block pulse functions have definite advantages for solving problems
involving integrals and derivatives due to their clearness in expressions and their simplicity in formulations; see [13]. Also,
Bernstein polynomials play a prominent role in various areas of mathematics. Many authors have used these polynomials
in the solution of integral equations, differential equations, and approximation theory; see, for instance, [14–17].

The purpose of this work is to utilize hybrid functions consisting of a combination of block pulse functions with normal-
ized Bernstein polynomials to obtain a numerical solution of the nonlinear Fredholm integro-differential equation

s
i=0

pi(x)y(i)(x) = g(x) + λ

 1

0
k(x, t)[y(t)]qdt, 0 ≤ x, t < 1, (1)
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with the conditions

y(i)(0) = αi, 0 ≤ i ≤ s − 1, (2)

where y(i)(x) is the ith derivative of the unknown function that will be determined, k(x, t) is the kernel of the integral, g(x)
and pi(x) are known analytic functions, q is a positive integer, and λ and αi are suitable constants. The proposed approach
for solving this problem uses a small number of bases, and benefits from the orthogonality of block pulse functions and the
advantages of orthonormal Bernstein polynomial properties to reduce the nonlinear integro-differential equation to easily
solvable nonlinear algebraic equations.

This paper is organized as follows. In the next section, we present a hybrid of Bernstein polynomials and block pulse func-
tions. Also, their useful properties such as function approximation, convergence analysis, operational matrix of product, and
operational matrix of differentiation are given. In Section 3, the numerical scheme for the solution of (1) and (2) is described.
In Section 4, the proposed method is applied to some nonlinear Fredholm integro-differential equations, and comparisons
aremadewith the existing analytic or numerical solutions that were reported in other publishedworks in literature. Finally,
conclusions are given in Section 5.

2. Properties of hybrid functions

2.1. Hybrid of block pulse functions and orthonormal Bernstein polynomials

The Bernstein polynomials of the nth degree are defined on the interval [0, 1] as [16]

Bi,n(x) =


n
i


xi(1 − x)n−i, for i = 0, 1, 2, . . . , n, (3)

where

n
i


=

n!
i!(n−i)! .

There are (n+ 1)nth-degree Bernstein polynomials. Using the Gram–Schmidt orthonormalization process on Bi,n(x), we
obtain a class of orthonormal polynomials from the Bernstein polynomials.We call themorthonormal Bernstein polynomials
of degree n, and denote them by bi,n(x), 0 ≤ i ≤ n. For n = 3, the four orthonormal Bernstein polynomials are given by

b0,3(x) = −
√
7[x3 − 3x2 + 3x − 1], b1,3(x) =

√
5[7x3 − 15x2 + 9x − 1],

b2,3(x) = −
√
3[21x3 − 33x2 + 13x − 1], and b3,3(x) = 35x3 − 45x2 + 15x − 1.

Hybrid functions hji(x), j = 1, 2, . . . ,m and i = 0, 1, . . . , n, are defined on the interval [0, 1) as

hji(x) =


√
mbi,n(mx − j + 1),

j − 1
m

≤ x <
j
m

,

0, otherwise,
(4)

where j and n are the order of the block pulse functions and the degree of the orthonormal Bernstein polynomials, respec-
tively.

It is clear that these sets of hybrid functions in Eq. (4) are orthonormal and disjoint.

2.2. Function approximation

A function y(x) ∈ L2[0, 1) may be approximated as

y(x) ≈

m
j=1

n
i=0

cjihji(x) = CTH(x), (5)

where

C = [CT
1, C

T
2, . . . , C

T
j , . . . , C

T
m]

T , (6)

Cj = [cj0, cj1, cj2, . . . , cjn]T , j = 1, 2, . . . ,m,

H(x) = [HT
1(x),H

T
2(x), . . . ,H

T
j (x), . . . ,H

T
m(x)]T , (7)

and Hj(x) = [hj0(x), hj1(x), . . . , hjn(x)]T , j = 1, 2, . . . ,m. The constant coefficients cji are

y(x), hji(x)


, i = 0, 1, 2, . . . , n,

j = 1, 2, . . . ,m, and (·, ·) is the standard inner product on L2[0, 1).
We can also approximate the function k(x, t) ∈ L2([0, 1) × [0, 1)) by

k(x, t) ≈

m
i=1

m
j=1

n
l=0

n
r=0

kijlrhil(x)hjr(t) = HT (x)KH(t), (8)
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where K = [kij
] is anm(n + 1) × m(n + 1) matrix, such that the elements of the submatrix kij are

kijlr =

 i/m

i−1/m

 j/m

j−1/m
k(x, t)hi(l−1)(x)hj(r−1)(t)dxdt, l, r = 1, 2, . . . , n + 1, i, j = 1, 2, . . . ,m, (9)

utilizing properties of block pulse functions and orthonormal Bernstein polynomials.

2.3. Convergence analysis

In this section, the error bound and convergence are established by the following lemma.

Lemma 2.1. Suppose that f ∈ C (n+1)
[0, 1) is an n + 1 times continuously differentiable function such that f =

m
j=1 fj, and

let Yj = Span{hj0(x), hj1(x), . . . , hjn(x)}, j = 1, 2, . . . ,m. If CT
j Hj(x) is the best approximation to fj from Yj, then CTH(x)

approximates f with the following error bound:f − CTH(x)

2 ≤

γ

mn+1(n + 1)!
√
2n + 3

, γ = maxx∈[0.1) |f (n+1)(x)|. (10)

Proof. The Taylor expansion for the function fj(x) is

f̃j(x) = fj


j − 1
m


+ f ′

j


j − 1
m


x −

j − 1
m


+ · · · + f (n)

j


j − 1
m

 
x −

j−1
m

n
n!

,
j − 1
m

≤ x <
j
m

,

for which it is known that

|fj(x) − f̃j(x)| ≤ |f (n+1)(η)|


x −

j−1
m

n+1

(n + 1)!
, η ∈ [j − 1/m, j/m), j = 1, 2, . . . ,m. (11)

Since CT
j Hj(x) is the best approximation to fj form Yj and f̃j ∈ Yj, using (11), we havefj − CT

j Hj(x)
2
2

≤

fj − f̃j
2 =

 j/m

j−1/m
|fj(x) − f̃j(x)|2dx

≤

 j/m

j−1/m


f (n+1)(η)(x − j − 1/m)n+1

(n + 1)!

2
dx

≤


γ

(n + 1)!

2  j/m

j−1/m


x −

j − 1
m

2n+2

dx =


γ

(n + 1)!

2 1
m2n+3(2n + 3)

.

Now, f − CTH(x)
2
2 ≤

m
j=1

fj − CT
j Hj(x)

2
2

≤
γ 2

m2n+2[(n + 1)!]2(2n + 3)
.

By taking the square roots, we have the above bound. �

2.4. The operational matrix of the product

In this section, we present a general formula for finding the m(n + 1) × m(n + 1) operational matrix of the product C̃
whenever

CTH(x)HT (x) ≈ HT (x)C̃, (12)
where

C̃ = diag [C̃1, C̃2, . . . , C̃j, . . . , C̃m]. (13)

In Eq. (13), C̃j = [c jlr ] are (n + 1) × (n + 1) symmetric matrices depending on n, where

c jlr =

 j/m

j−1/m


hj(l−1)(x)hj(r−1)(x)

n
i=0

cjihji(x)


dx, l, r = 1, 2, . . . , n + 1. (14)

Furthermore, the integration of the cross-product of two hybrid functions vectors is 1

0
H(x)HT (x)dx = I, (15)

where I is the m(n + 1) identity matrix.
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2.5. The operational matrix of differentiation

The operational matrix of the derivative of the hybrid function vector H(x) is defined by

d
dx

H(x) = DH(x), (16)

where D is the m(n + 1) × m(n + 1) operational matrix of the derivative, given as

H(x) = [HT
1(x),H

T
2(x), . . . ,H

T
j (x), . . . ,H

T
m(x)]T = ÃT̃(x),

where Ã = diag [A1,A2, . . . ,Aj, . . . ,Am] is them(n+ 1) ×m(n+ 1) coefficient matrix of the (n+ 1) × (n+ 1) coefficient
submatrix Aj, and T̃(x) = [t1(x), t2(x), . . . , tj(x), . . . , tm(x)]T is the m(n + 1) vector with tj(x) = [1, x, x2, . . . , xn]T , such
that Hj(x) = Ajtj(x). Now

d
dx

H(x) = ÃQ̃T̃(x) = ÃQ̃Ã−1H(x),

where Q̃ = diag [Q,Q, . . . ,Q, . . . ,Q] is them(n + 1) × m(n + 1) matrix of the (n + 1) × (n + 1) submatrix Q, such that

Q =


0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 2 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · n 0

 .

Hence,

D = ÃQ̃Ã−1. (17)

In general, we obtain

dk

dxk
H(x) = DkH(x), k = 1, 2, 3, . . . . (18)

3. Outline of the solution method

This section presents the derivation of the method for solving the sth-order nonlinear Fredholm integro-differential
equation (1) with the initial conditions (2).
Step 1: The functions y(i)(x), i = 0, 1, 2, . . . , s are approximated by

y(i)(x) = CT (H(x))(i) = CTDiH(x), i = 0, 1, 2, . . . , s, (19)

where D is given by (17).
Step 2: The function k(x, t) is approximated by (8).
Step 3: In this step, we present a general formula for approximating yq(x). By using Eqs. (5) and (12), we obtain

y2(x) = [CTH(x)]2 = CTH(x)HT (x)C = HT (x)C̃C,
y3(x) = CTH(x)[CTH(x)]2 = CTH(x)HT (x)C̃C = HT (x)C̃C̃C = HT (x)(C̃)2C,

and so by use of induction yq(x) will be approximated as

yq(x) = HT (x)(C̃)q−1C. (20)

Step 4: Approximate the functions g(x) and pi(x) by

g(x) ≈ GTH(x), (21)

and

pi(x) ≈ PT
i H(x), i = 0, 1, 2, . . . , s, (22)

where G and Pi are constant coefficient vectors which are defined similarly to Eq. (5).
Now, using Eqs. (19)–(22) and (8) to substitute into Eq. (1), we obtain

s
i=0

PT
i H(x)HT (x)(Di)TC = HT (x)G + λ

 1

0
HT (x)KH(t)HT (t)(C̃)q−1Cdt. (23)
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Utilizing Eqs. (12) and (15), we obtain
s

i=0

HT (x)P̃i(Di)TC = HT (x)G + λHT (x)K(C̃)q−1C, (24)

and hence we get
s

i=0

P̃i(Di)TC − λK(C̃)q−1C = G. (25)

The matrix equation (25) gives a system ofm(n + 1) nonlinear algebraic equations which can be solved utilizing the initial
condition for the elements of C. Once C is known, y(x) can be constructed by using Eq. (5).

4. Applications and numerical results

In this section, numerical results of some examples are presented to validate the accuracy, applicability, and convergence
of the proposed method. The absolute difference errors of this method are compared with those of the existing methods
reported in the literature [5,6,17,18]. The computations associated with these examples were performed using Matlab 9.0.

Example 1. Consider the first-order nonlinear Fredholm integro-differential equation [17,18]

y′(x) = 1 −
1
3
x +

 1

0
x y2(t) dt, 0 ≤ x < 1, (26)

with the initial condition

y(0) = 0. (27)

In this example, we have p0 = 0, p1 = 1, g(x) = 1 −
1
3x, λ = 1, k(x, t) = x, and q = 2.

The matrix equation (25) for this example is

P̃1DTC − K(C̃)C = G, (28)
where, for n = 1 andm = 2, we have

P̃1 = I, DT
=


−3 3

√
3 0 0

−
√
3 3 0 0

0 0 −3 3
√
3

0 0 −
√
3 3

 , C =

c10
c11
c20
c21

 ,

K =


1/16

√
3/48 1/16

√
3/48

√
3/16 1/16

√
3/16 1/16

1/4
√
3/12 1/4

√
3/12

√
3/8 1/8

√
3/8 1/8

 ,

C̃ =
1
4


3
√
6c10 −

√
2c11 −

√
2c10 +

√
6c11 0 0

−
√
2c10 +

√
6c11

√
6c10 + 5

√
2c11 0 0

0 0 3
√
6c20 −

√
2c21 −

√
2c20 +

√
6c21

0 0 −
√
2c20 +

√
6c21

√
6c20 + 5

√
2c21

 , G =


17

√
6/72

5
√
2/24

7
√
6/36

√
2/6

 .

Eq. (28) gives a system of nonlinear algebraic equations that can be solved utilizing the initial condition (27); i.e.,
√
6c10 −

√
2c11 = 0. We obtain

c10 =
√
6/24, c11 =

√
2/8, c20 =

√
6/6, and c21 =

√
2/4.

Substituting these values into (5), the result will be y(x) = x, which is the exact solution. It is noted that the result gives
the exact solution as in [17], while in [18] using the sinc method the maximum absolute error is 1.5217E−03.

Example 2. Consider the first-order nonlinear Fredholm integro-differential equation [6,17]

xy′(x) − y(x) = −
1
6

+
4
5
x2 +

 1

0
(x2 + t)y2(t)dt, 0 ≤ x < 1, (29)

with the initial condition

y(0) = 0. (30)

In this example, we have p0 = −1, p1 = x, g(x) = −
1
6 +

4
5x

2, λ = 1, k(x, t) = x2 + t , and q = 2.
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The matrix equation (25) for this example is

(P̃0 + P̃1DT )C − K(C̃)C = G, (31)

where for n = 2 and m = 2 we have

P̃0 = −I, P̃1 =



1/12
√
15/60 −

√
5/120 0 0 0

√
15/60 1/4

√
3/24 0 0 0

−
√
5/120

√
3/24 5/12 0 0 0

0 0 0 7/12
√
15/60 −

√
5/120

0 0 0
√
15/60 3/4

√
3/24

0 0 0 −
√
5/120

√
3/24 11/12



DT
=



−5 7
√
15/3 −2

√
5 0 0 0

−
√
15/3 −3 14

√
3/3 0 0 0

0 −8
√
3/3 8 0 0 0

0 0 0 −5 7
√
15/3 −2

√
5

0 0 0 −
√
15/3 −3 14

√
3/3

0 0 0 0 −8
√
3/3 8

 , C =


c10
c11
c12
c20
c21
c22

 ,

G =



−11
√
10/450

−
√
6/90

√
2/180

23
√
10/900

13
√
6/180

19
√
2/180



K =



1/24
√
15/45 7

√
5/240 13/72

√
15/20 41

√
5/720

√
15/72 1/12 5

√
3/144

√
15/24 1/16

√
3/16

√
5/48 5

√
3/144 1/24 7

√
5/144

√
3/16 5/72

7/48 31
√
15/720

√
15/20 41/144 17

√
15/240 7

√
5/90

7
√
15/144 3/16 5

√
3/72 11

√
15/144 13/48 7

√
3/72

√
5/16 11

√
3/144 1/12 13

√
5/144 5

√
3/48 1/9

 , C̃ =


c̃1 0
0 c̃2


,

c̃j =


5
√
10
7

cj0 −
5
√
6

21
cj1 +

√
2
7

cj2 −
5
√
6

21
cj0 +

11
√
10

35
cj1 −

8
√
30

105
cj2

√
2
7

cj0 −
8
√
30

105
cj1 +

3
√
10

35
cj2

−
5
√
6

21
cj0 +

11
√
10

35
cj1 −

8
√
30

105
cj2

11
√
10

35
cj0 +

3
√
6

7
cj1 +

√
2
7

cj2 −
8
√
30

105
cj0 +

√
2
7

cj1 +
5
√
6

21
cj2

√
2
7

cj0 −
8
√
30

105
cj1 +

3
√
10

35
cj2 −

8
√
30

105
cj0 +

√
2
7

cj1 +
5
√
6

21
cj2

3
√
10

35
cj0 +

5
√
6

21
cj1 +

13
√
2

7
cj2

 ,

j = 1, 2.

Eq. (31) gives a system of nonlinear algebraic equations that can be solved utilizing the initial condition (30); i.e.,
√
10c10 −

√
6c11 +

√
2c12 = 0. We obtain

c10 =
√
10/240, c11 =

√
6/48, c12 =

√
2/24, c20 =

√
10/15, c21 =

√
6/8, and c22 =

√
2/6.

Substituting these values into (5), the result will be y(x) = x2, which is the exact solution. It is noted that the result gives
the exact solution as in [17], while in [6] approximate solution is obtained with maximum absolute error 1.0000E−10.

Example 3. Consider the second order nonlinear Fredholm integro-differential equation [17]

y′′(x) + xy′(x) − xy(x) = ex − sin x +

 1

0
sin x. e−2ty2(t)dt, 0 ≤ x < 1, (32)

with the initial conditions

y(0) = y′(0) = 1. (33)

The exact solution is y(x) = ex. We solve this example by using the proposed method with n = 2 and m = 30 and with
n = 3 and m = 30. A comparison between the proposed method and the methods in [17] is shown in Table 1. It is clear
from this table that the results obtained by the proposed method, using a small number of bases, are very promising and
superior to those of [17].
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Table 1
Numerical comparison of absolute difference errors for Example 3.

x Method of [17] The proposed method
n = 7 n = 2,m = 30 n = 3,m = 30

0.0 3.2038E−009 3.1309E−007 4.0173E−010
0.2 7.1841E−010 3.8241E−007 4.9068E−010
0.4 1.4151E−010 4.6707E−007 5.9932E−010
0.6 4.0671E−011 5.7048E−007 7.3201E−010
0.8 9.1044E−010 6.9679E−007 8.9407E−010
1.0 3.7002E−009 8.2709E−007 1.4907E−010

Table 2
Numerical comparison of absolute difference errors for Example 4.

x Method of [5] Method of [17] The proposed method
No. of collocation
points N = 128

n = 7 n = 3,m = 35 n = 4,m = 15

0.125 3.7591E−007 2.4509E−010 5.5200E−011 1.6710E−011
0.250 6.6413E−007 1.0202E−010 8.9982E−011 3.9705E−012
0.375 8.6917E−007 1.6139E−010 9.4606E−011 1.2126E−011
0.500 1.0020E−006 3.2362E−010 9.2457E−011 1.8312E−012
0.625 1.0757E−006 1.9197E−010 7.4991E−011 8.1299E−012
0.750 1.1029E−006 6.6120E−011 4.9442E−011 7.7237E−012
0.875 1.0944E−006 2.2417E−010 2.6083E−011 2.5547E−012

Table 3
Maximum absolute errors for different values of n and m for Example 4.

n m
1 5 10 15 20 25 30 35

0 5.7735E−01 1.1547E−01 5.7735E−02 3.8490E−02 2.8868E−02 2.3094E−02 1.9245E−02 1.6496E−02
1 2.2361E−01 8.9443E−03 2.2361E−03 9.9381E−04 5.5902E−04 3.5777E−04 2.4845E−04 1.8254E−04
2 6.2994E−02 5.0395E−04 6.2994E−05 1.8665E−05 7.8743E−06 4.0316E−06 2.3331E−06 1.4693E−06
3 1.3889E−02 2.2222E−05 1.3889E−06 2.7435E−07 8.6806E−08 3.5556E−08 1.7147E−08 9.2554E−09
4 2.5126E−03 8.0403E−07 2.5126E−08 3.3088E−09 7.8519E−10 2.5729E−10 1.0340E−10 4.7839E−11
5 3.8521E−04 2.4653E−08 3.8521E−10 3.3818E−11 6.0189E−12 1.5778E−12 5.2841E−13 2.0955E−13
6 5.1230E−05 6.5574E−10 5.1230E−12 2.9984E−13 4.0023E−14 8.3935E−15 2.3425E−15 7.9625E−16

Example 4. Consider the following nonlinear Fredholm integro-differential equation [5,17]

y′(x) + y(x) =
1
2
(e−2

− 1) +

 1

0
y2(t) dt, 0 ≤ x < 1, (34)

with the initial condition

y(0) = 1. (35)

The exact solution of this problem is y(x) = e−x. In Table 2 we have compared the absolute difference errors of the proposed
method with those of the collocation method based on Haar wavelets in [5] and the method in [17].

The maximum absolute errors of Example 4 for some different values of n and m are shown in Table 3. As is seen from
Table 3, for a certain value of n, asm increases, the accuracy increases, and for a certain value ofm, as n increases, the accuracy
increases as well. Whenm = 1 the numerical solution obtained is based on orthonormal Bernstein polynomials only, while
when n = 0 the numerical solution obtained is based on block pulse functions only.

Example 5. Consider the first-order nonlinear Fredholm integro-differential equation [17,18]

y′(x) = ex −
1
5
e−x2(e5 − 1) +

 1

0
e2t−x2y3(t) dt, 0 ≤ x < 1, (36)

with the initial condition

y(0) = 1. (37)

The absolute difference errors of the proposedmethod for n = 4 andm = 35 and for n = 5 andm = 20, 35, and the absolute
difference errors of the method in [17] are displayed in Table 4. The results obtained by the proposed method using four
basis functions are better than those of [17] using nine basis functions. Of course, as n increases, the accuracy improves. Also,
the maximum absolute error in [18] using the sinc method is 3.7259E−03. The exact solution of this problem is y(x) = e−x.
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Table 4
Numerical comparison of absolute difference errors for Example 5.

x Method of [17] The proposed method
n = 9 n = 4,m = 35 n = 5,m = 20 n = 5,m = 35

0.0 2.4740E−012 6.3793E−013 2.3981E−014 3.3307E−016
0.2 1.9780E−012 7.7915E−013 2.9310E−014 4.4409E−016
0.4 2.5981E−012 9.5146E−013 3.5749E−014 4.4507E−016
0.6 3.8940E−012 1.1622E−012 4.3743E−014 6.6613E−016
0.8 5.7709E−012 1.4198E−012 5.3735E−014 8.8818E−016
1.0 3.3360E−012 1.6898E−012 6.2617E−014 1.3232E−015

5. Conclusion

In this work, we have presented a numerical method for solving nonlinear Fredholm integro-differential equations based
on a hybrid of block pulse functions and normalized Bernstein polynomials. One of the most important properties of this
method is obtaining the analytical solutions if the equation has an exact solution that is a polynomial function. Another
considerable advantage is that this method has high relative accuracy for small numbers of bases n. The matrices K, C̃, and
D in (8), (12) and (17), respectively, have large numbers of zero elements, and they are sparse; hence the present method
is very attractive, and it reduces the CPU time and amount of computer memory required. Moreover, satisfactory results
of illustrative examples with respect to several other methods (e.g., the Haar wavelet method, Walsh function method,
Bernstein polynomialmethod, and sinc collocationmethod) have been included to demonstrate the validity and applicability
of the proposed method.
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